+0  
 
0
1481
12
avatar+386 

f(x) = 4- sqrt (16 + 6x - x^2)

 

 

I think I have problems with the input of the graph writer provided by web2.0calc.

 

It gives me an "f" with finite ends. 

 

By the way, I don't understand how to link an image of the graph to a forum post.

 

 

I also need to find it's domain and image and it's intersection points with x=0 or y=0.

 Sep 15, 2016

Best Answer 

 #8
avatar+386 
+5

Nice!

 

Now I get it!

 

Thanks a lot!

 

You have any idea how one would find Ima f(x) ?

 Sep 17, 2016
 #1
avatar+386 
0

Original answer by geno3141:

 

f(x)  =  4 - sqrt(16 + 6x - x2)

 

For ease of calculation, I am replacing  f(x)  with  y:

 

                                                                  y  =  4 - sqrt(16 + 6x - x2)

Subtract 4 from both sides:                  y - 4  =  - sqrt(16 + 6x - x2)

Multiply both sides by -1:                    -y + 4  =  sqrt(16 + 6x - x2)

Simplify left side:                                   4 - y  =  sqrt(16 + 6x - x2)

Square both sides:                            (4 - y)2  =  16 + 6x - x2

Multiply out:                                16 - 8y + y2  =  16 + 6x - x2

Subtract 16 from both sides:           - 8y + y2  =  6x - x2

Rewrite:                                              y2 - 8y  =  -x2 + 6x

Factor:                                                y2 - 8y  =  -(x2 - 6x)

Complete the squares:    [ y2 - 8y + 16 ] - 16  =  [ -(x2 - 6x + 9) ] + 9

Simplify:                                   [ y2 - 8y + 16 ] =  [ -(x2 - 6x + 9) ] + 25

Factor:                                               (y + 4)2  =  -(x - 3)2 + 25

Rewrite:                              (x - 3)2 + (y + 4)2  =  25  

Analysis:  this is the equation of a circle with center  (3, -4)  and  radius = 5.

But:  the initial equation is only the lower half of this circle; thus, an arc from  (-2,4)  through  (3,-1)  to  8,4).

 Sep 15, 2016
 #2
avatar+386 
0

I just don't get the -16, +16 and the -9, +9 ...

TonyDrummer2  Sep 15, 2016
 #3
avatar+129852 
0

You can use Desmos and copy the hyperlink to your  post...... [the website calculator is "clunky," IMHO !!!!  ]

 

Here's the graph of this function : https://www.desmos.com/calculator/s3u8kl73w3

 

 

f(x) =   4- sqrt (16 + 6x - x^2)

 

Notice that the term inside the square root is only valid when its ≥  0

 

So......solving this we have

 

16 + 6x - x^2 ≥  0    factor

 

(-x + 8) (x + 2)  ≥ 0

 

Note that this is only true  wnen  x ≥ -2  and x ≤ 8

 

So....the domain of the function is   [-2, 8 ]

 

Note to find the intersection with the y axis,, set x = 0, the term inside the square root will equal 16 ...   so  y =    4 - √16 =   4 - 4  = 0 ........so when x = 0, then y = 0 

 

This is confirmed by the graph.....it contains the point (0, 0)......so it intersects the origin

 

And the other intersection point with the x axis  is just determined by setting hte function to 0 ....so we have

 

0  = 4 -  sqrt (16 + 6x - x^2)   rearrange

 

sqrt (16 + 6x - x^2)  = 4     square both sides

 

16 + 6x - x^2  = 16       subtract 16 from both sides

 

-x^2 + 6x  = 0       factor

 

x ( -x + 6)  = 0     set both factors to 0   and we have that the intersection points with the x axis occur at x = 0  [ which we already know ]   and  x = 6

 

Is that all you neede to know???

 

 

cool cool cool

 Sep 15, 2016
 #4
avatar+386 
0

I don't understand this part:

 

x(-x+6)=0

 

Setting both factors to 0? Does that mean :

 

x=0

 

0(-0+6)=0

0=0

 

and then 

 

x=6

 

6(-6+6)=0

-36+36=0

 

(gives coords x=0 y=0 too)

 

By the way huge thanks for the help!

TonyDrummer2  Sep 17, 2016
 #5
avatar+129852 
0

x(-x+6)=0

 

Setting both factors  to 0 , we have

 

x = 0         and      -x + 6 = 0

 

The first is obvious

 

For the second, we have

 

-x + 6 = 0     add x to both sides

 

6 = x

 

These are the two x intercepts  at x = 0 and x = 6

 

 

 

cool cool cool

 Sep 17, 2016
 #6
avatar+386 
0

But that's exactly what I don't get.

If you set x=0 wouldn't that mean:

 

0=0(-0+6)   ?  cause that's = 0

 

I don't get how you can end up with x=6

 

Like how did you go from 0=x(-x+6) to 0= -x + 6

TonyDrummer2  Sep 17, 2016
 #7
avatar+129852 
0

Remember that, at an x intercept, y = 0

 

So......if we plug 0 into the function, we get

 

y = 4 - sqrt [16  + 6(0)  - 0^2 ]  =

 

4 - sqrt (16)  =

 

4 - 4  = 0

 

This shows that x = 0 must be a root  [ i.e., an x intercept ] because when we plug this value into the function we get y = 0 back

 

Likewise....putting  x = 6 into the function we have

 

y = 4  - sqrt [ 16 + 6(6)  - 6^2 ]  =

 

4  - sqrt [ 16 + 36 - 36 ] =

 

4 - sqrt [ 16]  =    

 

4 - 4 = 0     so    x = 6 must also be a root [ i.e., an x intercept ]

 

 

Remember something else......if  a * b   = 0    then either a = 0  or b = 0   or they both equal 0

 

So....if we have   x ( -x + 6)  = 0 , then either  x = 0  or  -x + 6 =0 

 

And we needed to solve both to find out what makes each factor equal to 0

 

 

 

cool cool cool 

 Sep 17, 2016
 #8
avatar+386 
+5
Best Answer

Nice!

 

Now I get it!

 

Thanks a lot!

 

You have any idea how one would find Ima f(x) ?

TonyDrummer2  Sep 17, 2016
 #9
avatar+129852 
0

Sorry, Tony.....I'm  not familiar with images of a function....

 

Here's a resource that might help you.....

 

 

cool cool cool

 Sep 17, 2016
 #10
avatar+386 
0

There does not seem to be any link there haha

 Sep 17, 2016
 #11
avatar+129852 
0

Oops...sorry......LOL!!!

 

Here it is....http://pennance.us/home/downloads/3018/image.pdf

 

If I can figure this out.....I'll see if I can help you....

 

 

 

cool cool cool

 Sep 17, 2016
 #12
avatar+386 
+5

Huge thank you. You already did a whole lot!

TonyDrummer2  Sep 17, 2016

1 Online Users