Taking a b out of the numerator and denominator of the first one, we get $\frac{4b-12}{18b^2-128}=\frac{2b-6}{9b^2-64}=\frac{2b-6}{(3b+8)(3b-8)}$.
FOr the second, the denominator factors as $3(3b+2)(7b-6)$, and $27b+18=9(3b+2)$. You can do the rest, I believe in you!!
:0 I think this is for spirit of math right
4b2 - 12b = 4b(b - 3)
27b + 18 = 9(3b + 2)
18b3 - 128b = 2b(9b2 - 64)
= 2b(3b + 8)(3b - 8)
63b2 - 282b - 216 = 3(21b2 - 94b - 72)
= 3(3b + 2)(7b - 36)
Then you put these over the fractions:
= 4b(b - 3) / 2b(3b + 8)(3b - 8) - 9(3b + 2) / 3(3b + 2)(7b - 36)
= 2(b - 3) / (3b + 8)(3b - 8) - 3 / (7b - 36)
= (2(b - 3)(7b - 36) - 3(3b + 8)(3b - 8)) / (3b + 8)(3b - 8)(7b - 36)
= (14b2 - 114b + 216 - 27b2 + 192) / (3b + 8)(3b - 8)(7b - 36)
= (-13b2 - 114b + 408) / (3b + 8)(3b - 8)(7b - 36) ; b ≠ 0 , ±8/3 , -2/3 , 36/7