+0  
 
0
65
1
avatar+468 

Factor the expression completely over the complex numbers.

 

SamJones  Jan 26, 2018
Sort: 

1+0 Answers

 #1
avatar
+1

Solve for x:

x^4 + 10 x + 25 = 0

 

Subtract 10 x - 10 x^2 from both sides:

x^4 + 10 x^2 + 25 = 10 x^2 - 10 x

 

x^4 + 10 x^2 + 25 = (x^2 + 5)^2:

(x^2 + 5)^2 = 10 x^2 - 10 x

 

Add 2 (x^2 + 5) λ + λ^2 to both sides:

(x^2 + 5)^2 + 2 λ (x^2 + 5) + λ^2 = -10 x + 10 x^2 + 2 λ (x^2 + 5) + λ^2

 

(x^2 + 5)^2 + 2 λ (x^2 + 5) + λ^2 = (x^2 + 5 + λ)^2:

(x^2 + 5 + λ)^2 = -10 x + 10 x^2 + 2 λ (x^2 + 5) + λ^2

 

-10 x + 10 x^2 + 2 λ (x^2 + 5) + λ^2 = (2 λ + 10) x^2 - 10 x + 10 λ + λ^2:

(x^2 + 5 + λ)^2 = x^2 (2 λ + 10) - 10 x + 10 λ + λ^2

 

Complete the square on the right hand side:

(x^2 + 5 + λ)^2 = (x sqrt(2 λ + 10) - 5/sqrt(2 λ + 10))^2 + (4 (2 λ + 10) (λ^2 + 10 λ) - 100)/(4 (2 λ + 10))

 

Solve using the quadratic formula:

x = 1/2 (sqrt(2) sqrt(λ + 5) + sqrt(2) sqrt(-(25 + 10 λ + λ^2 + 5 sqrt(2) sqrt(λ + 5))/(λ + 5))) or x = 1/2 (sqrt(2) sqrt(λ + 5) - sqrt(2) sqrt(-(25 + 10 λ + λ^2 + 5 sqrt(2) sqrt(λ + 5))/(λ + 5))) or x = 1/2 (sqrt(2) sqrt((-25 - 10 λ - λ^2 + 5 sqrt(2) sqrt(λ + 5))/(λ + 5)) - sqrt(2) sqrt(λ + 5)) or x = 1/2 (-sqrt(2) sqrt(λ + 5) - sqrt(2) sqrt((-25 - 10 λ - λ^2 + 5 sqrt(2) sqrt(λ + 5))/(λ + 5))) where λ = -5 + (5 2^(2/3))/(3/5 (i sqrt(1119) + 9))^(1/3) + (5/6)^(2/3) (i sqrt(1119) + 9)^(1/3)

 

Substitute λ = -5 + (5 2^(2/3))/(3/5 (i sqrt(1119) + 9))^(1/3) + (5/6)^(2/3) (i sqrt(1119) + 9)^(1/3) and approximate:

x = -1.61762 - 1.035 i or x = -1.61762 + 1.035 i or x = 1.61762 - 2.04014 i or x = 1.61762 + 2.04014 i

Guest Jan 26, 2018

14 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details