We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
237
1
avatar+559 

Factor the expression completely over the complex numbers.

 

 Jan 26, 2018
 #1
avatar
+1

Solve for x:

x^4 + 10 x + 25 = 0

 

Subtract 10 x - 10 x^2 from both sides:

x^4 + 10 x^2 + 25 = 10 x^2 - 10 x

 

x^4 + 10 x^2 + 25 = (x^2 + 5)^2:

(x^2 + 5)^2 = 10 x^2 - 10 x

 

Add 2 (x^2 + 5) λ + λ^2 to both sides:

(x^2 + 5)^2 + 2 λ (x^2 + 5) + λ^2 = -10 x + 10 x^2 + 2 λ (x^2 + 5) + λ^2

 

(x^2 + 5)^2 + 2 λ (x^2 + 5) + λ^2 = (x^2 + 5 + λ)^2:

(x^2 + 5 + λ)^2 = -10 x + 10 x^2 + 2 λ (x^2 + 5) + λ^2

 

-10 x + 10 x^2 + 2 λ (x^2 + 5) + λ^2 = (2 λ + 10) x^2 - 10 x + 10 λ + λ^2:

(x^2 + 5 + λ)^2 = x^2 (2 λ + 10) - 10 x + 10 λ + λ^2

 

Complete the square on the right hand side:

(x^2 + 5 + λ)^2 = (x sqrt(2 λ + 10) - 5/sqrt(2 λ + 10))^2 + (4 (2 λ + 10) (λ^2 + 10 λ) - 100)/(4 (2 λ + 10))

 

Solve using the quadratic formula:

x = 1/2 (sqrt(2) sqrt(λ + 5) + sqrt(2) sqrt(-(25 + 10 λ + λ^2 + 5 sqrt(2) sqrt(λ + 5))/(λ + 5))) or x = 1/2 (sqrt(2) sqrt(λ + 5) - sqrt(2) sqrt(-(25 + 10 λ + λ^2 + 5 sqrt(2) sqrt(λ + 5))/(λ + 5))) or x = 1/2 (sqrt(2) sqrt((-25 - 10 λ - λ^2 + 5 sqrt(2) sqrt(λ + 5))/(λ + 5)) - sqrt(2) sqrt(λ + 5)) or x = 1/2 (-sqrt(2) sqrt(λ + 5) - sqrt(2) sqrt((-25 - 10 λ - λ^2 + 5 sqrt(2) sqrt(λ + 5))/(λ + 5))) where λ = -5 + (5 2^(2/3))/(3/5 (i sqrt(1119) + 9))^(1/3) + (5/6)^(2/3) (i sqrt(1119) + 9)^(1/3)

 

Substitute λ = -5 + (5 2^(2/3))/(3/5 (i sqrt(1119) + 9))^(1/3) + (5/6)^(2/3) (i sqrt(1119) + 9)^(1/3) and approximate:

x = -1.61762 - 1.035 i or x = -1.61762 + 1.035 i or x = 1.61762 - 2.04014 i or x = 1.61762 + 2.04014 i

 Jan 26, 2018

7 Online Users

avatar
avatar