+0  
 
0
171
1
avatar

Factoring question. Please help with both!

Guest Sep 16, 2017
 #1
avatar
0

Factor the following:
a^3 + 64 b^3

Hint: | Write 64 b^3 as a cube in order to express a^3 + 64 b^3 as a sum of cubes.
a^3 + 64 b^3 = a^3 + (4 b)^3:
a^3 + (4 b)^3

Hint: | Factor the sum of two cubes.
Factor the sum of two cubes. a^3 + (4 b)^3 = (a + 4 b) (a^2 - a×4 b + (4 b)^2):
(a + 4 b) (a^2 - 4 a b + (4 b)^2)

Hint: | Distribute exponents over products in (4 b)^2.
Multiply each exponent in 4 b by 2:
(a + 4 b) (a^2 - 4 a b + 4^2 b^2)

Hint: | Evaluate 4^2.
4^2 = 16:
(a + 4 b) (a^2 - 4 a b + 16 b^2)

 

 

 

Factor the following:
27 - y^12

Hint: | Factor a minus sign out of 27 - y^12.
Factor -1 out of 27 - y^12:
-(y^12 - 27)

Hint: | Express y^12 - 27 as a difference of cubes.
y^12 - 27 = (y^4)^3 - 3^3:
-(y^4)^3 - 3^3

Hint: | Factor the difference of two cubes.
Factor the difference of two cubes. (y^4)^3 - 3^3 = (y^4 - 3) ((y^4)^2 + y^4 3 + 3^2):
-(y^4 - 3) ((y^4)^2 + 3 y^4 + 3^2)

Hint: | For all positive integer exponents (a^n)^m = a^(m n). Apply this to (y^4)^2.
Multiply exponents. (y^4)^2 = y^(4×2):
-(y^4 - 3) (y^(4×2) + 3 y^4 + 3^2)

Hint: | Multiply 4 and 2 together.
4×2 = 8:
-(y^4 - 3) (y^8 + 3 y^4 + 3^2)

Hint: | Evaluate 3^2.
3^2 = 9:
-(y^4 - 3) (y^8 + 3 y^4 + 9)

Guest Sep 16, 2017

18 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.