1. 72n^2 + 570n + 875
2. 300p^2 - 595p + 294
I was told I was supposed to use a "5-step method" to solve these but I don't remember what it was other than the first step: a/2
Factoring Questions
1. 72n^2 + 570n + 875
2. 300p^2 - 595p + 294
Hello Guest!
1.
\(72n^2 + 570n + 875=0\)
\(n = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(n =\dfrac{-570 \pm \sqrt{570^2-4\cdot 72\cdot 875}}{2\cdot 72}\)
\(n =\dfrac{-570 \pm 270}{2\cdot 72}\)
\(n\in\{2.08\overline 3,-5.8\overline 3\}\)
\(72n^2 + 570n + 875=(n+5.8\overline 3)(n-2.08\overline 3)\)
2.
\( 300p^2 - 595p + 294=0\)
\(p = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(p =\dfrac{595 \pm \sqrt{595^2-4\cdot 300\cdot 294}}{2\cdot 300}\)
\(p =\dfrac{595 \pm 35}{2\cdot 300}\)
\(p\in\{1.05,0.9\overline 3\}\)
\(300p^2 - 595p + 294=(p-1.05)(p-0.9\overline 3)\)
!