+0  
 
+1
326
1
avatar+63 

Express a4(b - c) + b4 (c - a) + c4 (a - b) as the product of four factors.

 

(b-c),(c-a) and (a-b) are products of this expression

OldTimer  Oct 20, 2017
 #1
avatar+20151 
+2

Express a4(b - c) + b4 (c - a) + c4 (a - b) as the product of four factors.

(b-c),(c-a) and (a-b) are products of this expression

 

\(\begin{array}{|rcll|} \hline a^4(b-c)+b^4(c-a)+c^4(a-b) &=& (b-c)(c-a)(a-b)\cdot x \\\\ x &=& \dfrac{a^4(b-c)+b^4(c-a)+c^4(a-b)}{(b-c)(c-a)(a-b)} \\\\ &=& \dfrac{a^4b-a^4c+b^4c-b^4a+c^4a-c^4b}{-a^2b+a^2c-b^2c+b^2a-c^2a+c^2b} \\\\ &=& \dfrac{ a^4·b - a^4·c - a·b^4 + a·c^4 + b^4·c - b·c^4 }{-a^2·b + a^2·c + a·b^2 - a·c^2 - b^2·c + b·c^2} \\\\ \hline \end{array}\)

 

Polynom division after variable c:

\(\small{ \begin{array}{|rcll|} \hline && \text {in divisor term with max power of c is: } -ac^2 \\ && \text {current residue: } a^4·b - a^4·c - a·b^4 + a·c^4 + b^4·c - b·c^4 \\ && \text {in current residue term with max power of c: } ac^4 \\ && \text {quotient } \frac{ac^4}{-ac^2} = -c^2 \\ && \text {product } -c^2·(-a^2·b + a^2·c + a·b^2 - a·c^2 - b^2·c + b·c^2) = a^2·b·c^2 - a^2·c^3 - a·b^2·c^2 + a·c^4 + b^2·c^3 - b·c^4 \\ && \text {subtract product form current residue: } \\ && \text {current residue: } a^4·b - a^4·c - a^2·b·c^2 + a^2·c^3 - a·b^4 + a·b^2·c^2 + b^4·c - b^2·c^3 \\ && \text {in current residue term with next lower power of c is: } a^2·c^3 \\ && \text {quotient } \frac{a^2·c^3}{-ac^2} = -a·c \\ && \text {product } -a·c·(-a^2·b + a^2·c + a·b^2 - a·c^2 - b^2·c + b·c^2) = a^3·b·c - a^3·c^2 - a^2·b^2·c + a^2·c^3 + a·b^2·c^2 - a·b·c^3 \\ && \text {subtract product form current residue: } \\ && \text {current residue: } a^4·b - a^4·c - a^3·b·c + a^3·c^2 + a^2·b^2·c - a^2·b·c^2 - a·b^4 + a·b·c^3 + b^4·c - b^2·c^3 \\ && \text {in current residue term with next lower power of c is: } a·b·c^3 \\ && \text {quotient } \frac{a·b·c^3}{-a·c^2} = -b·c \\ && \text {product } -b·c·(-a^2·b + a^2·c + a·b^2 - a·c^2 - b^2·c + b·c^2) = a^2·b^2·c - a^2·b·c^2 - a·b^3·c + a·b·c^3 + b^3·c^2 - b^2·c^3 \\ && \text {subtract product form current residue: } \\ && \text {current residue: } a^4·b - a^4·c - a^3·b·c + a^3·c^2 - a·b^4 + a·b^3·c + b^4·c - b^3·c^2 \\ && \text {in current residue term with next lower power of c is: } a^3·c^2 \\ && \text {quotient } \frac{a^3·c^2}{-a·c^2} = -a^2 \\ && \text {product } -a^2·(-a^2·b + a^2·c + a·b^2 - a·c^2 - b^2·c + b·c^2) = a^4·b - a^4·c - a^3·b^2 + a^3·c^2 + a^2·b^2·c - a^2·b·c^2 \\ && \text {subtract product form current residue: } \\ && \text {current residue: } a^3·b^2 - a^3·b·c - a^2·b^2·c + a^2·b·c^2 - a·b^4 + a·b^3·c + b^4·c - b^3·c^2 \\ && \text {in current residue term with next lower power of c is: } a^2·b·c^2 \\ && \text {quotient } \frac{a^2·b·c^2}{-a·c^2} = -a·b \\ && \text {product } -a·b·(-a^2·b + a^2·c + a·b^2 - a·c^2 - b^2·c + b·c^2) = a^3·b^2 - a^3·b·c - a^2·b^3 + a^2·b·c^2 + a·b^3·c - a·b^2·c^2 \\ && \text {subtract product form current residue: } \\ && \text {current residue: } a^2·b^3 - a^2·b^2·c - a·b^4 + a·b^2·c^2 + b^4·c - b^3·c^2 \\ && \text {in current residue term with next lower power of c is: } a·b^2·c^2 \\ && \text {quotient } \frac{a·b^2·c^2}{-a·c^2} = -b^2 \\ && \text {product } -b^2·(-a^2·b + a^2·c + a·b^2 - a·c^2 - b^2·c + b·c^2) = a^2·b^3 - a^2·b^2·c - a·b^4 + a·b^2·c^2 + b^4·c - b^3·c^2 \\ && \text {subtract product form current residue: } \\ && \text {current residue: } 0 \\\\ x&=& \dfrac{a^4·b - a^4·c - a·b^4 + a·c^4 + b^4·c - b·c^4 } {-a^2·b + a^2·c + a·b^2 - a·c^2 - b^2·c + b·c^2 } \\\\ &=& -a^2 - a·b - a·c - b^2 - b·c - c^2 \\ \hline \end{array} }\)

 

\( a^4(b-c)+b^4(c-a)+c^4(a-b) = (b-c)(c-a)(a-b)(-a^2 - a·b - a·c - b^2 - b·c - c^2) \)

 

laugh

heureka  Oct 20, 2017

15 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.