+0  
 
0
69
2
avatar

The equation of the line through $2 + 3i$ and $0$ can be written as \[az + b \overline{z} = 0\]for some complex numbers $a$ and $b$. Find the quotient $b/a$ in rectangular form.

 Jan 18, 2019
 #1
avatar+21338 
+8

The equation of the line through $2 + 3i$ and $0$ can be written as \[az + b \overline{z} = 0\]for some complex numbers $a$ and $b$.

Find the quotient $b/a$ in rectangular form.

\(\begin{array}{|rcll|} \hline az + b \overline{z} &=& 0 \\ &&\boxed{ z = 2+3i} \\ && \boxed{\overline{z} = 2-3i} \\ a(2+3i) + b (2-3i) &=& 0 \\ b (2-3i) &=& -a(2+3i) \\\\ \dfrac{b}{a}&=& \dfrac{-(2+3i)} {(2-3i)} \\\\ \dfrac{b}{a}&=& \dfrac{-(2+3i)} {(2-3i)}\cdot\dfrac{(2+3i)} {(2+3i)} \\\\ \dfrac{b}{a}&=& \dfrac{-(2+3i)(2+3i)} {(2-3i)(2+3i)} \\\\ \dfrac{b}{a}&=& \dfrac{-(4+12i+9i^2)} {4-9i^2} \quad & | \quad i^2=-1 \\\\ \dfrac{b}{a}&=& \dfrac{-(4+12i-9)} {4+9} \\\\ \dfrac{b}{a}&=& \dfrac{-(-5+12i)} {13} \\\\ \dfrac{b}{a}&=& \dfrac{5-12i} {13} \\\\ \mathbf{\dfrac{b}{a}} &\mathbf{=}& \mathbf{\dfrac{5} {13} -\dfrac{12} {13}i} \\ \hline \end{array}\)

 

laugh

 Jan 18, 2019

13 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.