We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
214
2
avatar

The equation of the line through $2 + 3i$ and $0$ can be written as \[az + b \overline{z} = 0\]for some complex numbers $a$ and $b$. Find the quotient $b/a$ in rectangular form.

 Jan 18, 2019
 #1
avatar+22260 
+9

The equation of the line through $2 + 3i$ and $0$ can be written as \[az + b \overline{z} = 0\]for some complex numbers $a$ and $b$.

Find the quotient $b/a$ in rectangular form.

\(\begin{array}{|rcll|} \hline az + b \overline{z} &=& 0 \\ &&\boxed{ z = 2+3i} \\ && \boxed{\overline{z} = 2-3i} \\ a(2+3i) + b (2-3i) &=& 0 \\ b (2-3i) &=& -a(2+3i) \\\\ \dfrac{b}{a}&=& \dfrac{-(2+3i)} {(2-3i)} \\\\ \dfrac{b}{a}&=& \dfrac{-(2+3i)} {(2-3i)}\cdot\dfrac{(2+3i)} {(2+3i)} \\\\ \dfrac{b}{a}&=& \dfrac{-(2+3i)(2+3i)} {(2-3i)(2+3i)} \\\\ \dfrac{b}{a}&=& \dfrac{-(4+12i+9i^2)} {4-9i^2} \quad & | \quad i^2=-1 \\\\ \dfrac{b}{a}&=& \dfrac{-(4+12i-9)} {4+9} \\\\ \dfrac{b}{a}&=& \dfrac{-(-5+12i)} {13} \\\\ \dfrac{b}{a}&=& \dfrac{5-12i} {13} \\\\ \mathbf{\dfrac{b}{a}} &\mathbf{=}& \mathbf{\dfrac{5} {13} -\dfrac{12} {13}i} \\ \hline \end{array}\)

 

laugh

 Jan 18, 2019

6 Online Users

avatar