+0

# Fill In the Blank(Geo)

0
1235
1

Given: Quadrilateral ABCD is inscribed in circle O.

Prove: mA+mC=180dg

Fill in the blanks(___) to complete the proof.

Statements:                                                                        Reason:

Quadrilateral ABCD is inscribed in circle O.                        Given

m(arc)BCD=2(mA)                                                              1._____

2._____                                                                                 Inscribed Angle Theorem

m(arc)BCD+m(arc)DAB=360dg                                           3.____

2(mA)+2(mC)=360dg                                                          Substitution Property

4._____                                                                                  Division Property of Equality

Here are the options: Inscribed Angle Theorem, The sum of the arcs that make a circle is 360dg, Central Angle Theorem, mA+mB=180dg, mA+mC=180dg, and m(arc)DAB=2(mC).

Guest Mar 22, 2017
#1
+7023
0

1. Inscribed Angle Theorem

2. m(arc)DAB=2(mC)

3. The sum of the arcs that make a circle is 360dg,

4. mA+mC=180dg

In Hong Kong we just do "opp.(opposite) angles of cyclic quadrilateral" and then write mA + mC = 180. All finished. :)

MaxWong  Mar 22, 2017