+0  
 
0
292
1
avatar

Given: Quadrilateral ABCD is inscribed in circle O. 

Prove: mA+mC=180dg

Fill in the blanks(___) to complete the proof.

 

Statements:                                                                        Reason:

Quadrilateral ABCD is inscribed in circle O.                        Given     

m(arc)BCD=2(mA)                                                              1._____ 

2._____                                                                                 Inscribed Angle Theorem 

m(arc)BCD+m(arc)DAB=360dg                                           3.____

2(mA)+2(mC)=360dg                                                          Substitution Property

4._____                                                                                  Division Property of Equality

 

Here are the options: Inscribed Angle Theorem, The sum of the arcs that make a circle is 360dg, Central Angle Theorem, mA+mB=180dg, mA+mC=180dg, and m(arc)DAB=2(mC). 

Guest Mar 22, 2017
Sort: 

1+0 Answers

 #1
avatar+6900 
0

1. Inscribed Angle Theorem

2. m(arc)DAB=2(mC)

3. The sum of the arcs that make a circle is 360dg, 

4. mA+mC=180dg

 

In Hong Kong we just do "opp.(opposite) angles of cyclic quadrilateral" and then write mA + mC = 180. All finished. :)

MaxWong  Mar 22, 2017

22 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details