Find a+b+c, given that x+y≠−1$andax+by+c=x+7,a+bx+cy=2x+6y,ay+b+cx=4x+y.
Find a+b+c, given that x+y≠−1 and ax+by+c=x+7,a+bx+cy=2x+6y,ay+b+cx=4x+y.
(1)ax+by+c=x+7(2)a+bx+cy=2x+6y(3)ay+b+cx=4x+y(1)+(2)+(3):(ax+by+c)+(a+bx+cy)+(ay+b+cx)=(x+7)+(2x+6y)+(4x+y)(ax+bx+cx)+(ay+by+cy)+(a+b+c)=7x+7y+7x(a+b+c)+y(a+b+c)+(a+b+c)=7(x+y+1)(a+b+c)(x+y+1)=7(x+y+1)(a+b+c)=7(x+y+1)(x+y+1)|x+y≠−1a+b+c=7