+0  
 
0
137
1
avatar+615 

Find $a+b+c$, given that $x+y\neq -1$ and \begin{align*} ax+by+c&=x+7,\\ a+bx+cy&=2x+6y,\\ ay+b+cx&=4x+y. \end{align*}

supermanaccz  Mar 30, 2018

Best Answer 

 #1
avatar+7155 
+2

Find  \(a+b+c\) , given that  \(x+y\neq -1\)  and  \( \begin{align*} ax+by+c&=x+7,\\ a+bx+cy&=2x+6y,\\ ay+b+cx&=4x+y. \end{align*}\)

 

-----------------------------------------------------------------------------------------------------------------------

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (ax + by + c) + (a + bx + cy) + (ay + b + cx)

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (x + 7) + (2x + 6y) + (4x + y)

 

ax + by + c + a + bx + cy + ay + b + cx  =  x + 7 + 2x + 6y + 4x + y

 

ax + bx + cx + ay + by + cy + a + b + c  =  7x + 7y + 7

 

x(a + b + c) + y(a + b + c) + 1(a + b + c)  =  7(x + y + 1)

 

(a + b + c)(x + y + 1)  =  7( x + y + 1)

 

a + b + c  =  7

hectictar  Mar 30, 2018
edited by hectictar  Mar 30, 2018
 #1
avatar+7155 
+2
Best Answer

Find  \(a+b+c\) , given that  \(x+y\neq -1\)  and  \( \begin{align*} ax+by+c&=x+7,\\ a+bx+cy&=2x+6y,\\ ay+b+cx&=4x+y. \end{align*}\)

 

-----------------------------------------------------------------------------------------------------------------------

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (ax + by + c) + (a + bx + cy) + (ay + b + cx)

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (x + 7) + (2x + 6y) + (4x + y)

 

ax + by + c + a + bx + cy + ay + b + cx  =  x + 7 + 2x + 6y + 4x + y

 

ax + bx + cx + ay + by + cy + a + b + c  =  7x + 7y + 7

 

x(a + b + c) + y(a + b + c) + 1(a + b + c)  =  7(x + y + 1)

 

(a + b + c)(x + y + 1)  =  7( x + y + 1)

 

a + b + c  =  7

hectictar  Mar 30, 2018
edited by hectictar  Mar 30, 2018

9 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.