Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1503
1
avatar+655 

Find $a+b+c$, given that $x+y\neq -1$ and ax+by+c=x+7,a+bx+cy=2x+6y,ay+b+cx=4x+y.

 Mar 30, 2018

Best Answer 

 #1
avatar+9488 
+2

Find  a+b+c , given that  x+y1  and  ax+by+c=x+7,a+bx+cy=2x+6y,ay+b+cx=4x+y.

 

-----------------------------------------------------------------------------------------------------------------------

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (ax + by + c) + (a + bx + cy) + (ay + b + cx)

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (x + 7) + (2x + 6y) + (4x + y)

 

ax + by + c + a + bx + cy + ay + b + cx  =  x + 7 + 2x + 6y + 4x + y

 

ax + bx + cx + ay + by + cy + a + b + c  =  7x + 7y + 7

 

x(a + b + c) + y(a + b + c) + 1(a + b + c)  =  7(x + y + 1)

 

(a + b + c)(x + y + 1)  =  7( x + y + 1)

 

a + b + c  =  7

 Mar 30, 2018
edited by hectictar  Mar 30, 2018
 #1
avatar+9488 
+2
Best Answer

Find  a+b+c , given that  x+y1  and  ax+by+c=x+7,a+bx+cy=2x+6y,ay+b+cx=4x+y.

 

-----------------------------------------------------------------------------------------------------------------------

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (ax + by + c) + (a + bx + cy) + (ay + b + cx)

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (x + 7) + (2x + 6y) + (4x + y)

 

ax + by + c + a + bx + cy + ay + b + cx  =  x + 7 + 2x + 6y + 4x + y

 

ax + bx + cx + ay + by + cy + a + b + c  =  7x + 7y + 7

 

x(a + b + c) + y(a + b + c) + 1(a + b + c)  =  7(x + y + 1)

 

(a + b + c)(x + y + 1)  =  7( x + y + 1)

 

a + b + c  =  7

hectictar Mar 30, 2018
edited by hectictar  Mar 30, 2018

0 Online Users