We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
413
1
avatar+638 

Find $a+b+c$, given that $x+y\neq -1$ and \begin{align*} ax+by+c&=x+7,\\ a+bx+cy&=2x+6y,\\ ay+b+cx&=4x+y. \end{align*}

 Mar 30, 2018

Best Answer 

 #1
avatar+7612 
+2

Find  \(a+b+c\) , given that  \(x+y\neq -1\)  and  \( \begin{align*} ax+by+c&=x+7,\\ a+bx+cy&=2x+6y,\\ ay+b+cx&=4x+y. \end{align*}\)

 

-----------------------------------------------------------------------------------------------------------------------

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (ax + by + c) + (a + bx + cy) + (ay + b + cx)

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (x + 7) + (2x + 6y) + (4x + y)

 

ax + by + c + a + bx + cy + ay + b + cx  =  x + 7 + 2x + 6y + 4x + y

 

ax + bx + cx + ay + by + cy + a + b + c  =  7x + 7y + 7

 

x(a + b + c) + y(a + b + c) + 1(a + b + c)  =  7(x + y + 1)

 

(a + b + c)(x + y + 1)  =  7( x + y + 1)

 

a + b + c  =  7

 Mar 30, 2018
edited by hectictar  Mar 30, 2018
 #1
avatar+7612 
+2
Best Answer

Find  \(a+b+c\) , given that  \(x+y\neq -1\)  and  \( \begin{align*} ax+by+c&=x+7,\\ a+bx+cy&=2x+6y,\\ ay+b+cx&=4x+y. \end{align*}\)

 

-----------------------------------------------------------------------------------------------------------------------

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (ax + by + c) + (a + bx + cy) + (ay + b + cx)

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (x + 7) + (2x + 6y) + (4x + y)

 

ax + by + c + a + bx + cy + ay + b + cx  =  x + 7 + 2x + 6y + 4x + y

 

ax + bx + cx + ay + by + cy + a + b + c  =  7x + 7y + 7

 

x(a + b + c) + y(a + b + c) + 1(a + b + c)  =  7(x + y + 1)

 

(a + b + c)(x + y + 1)  =  7( x + y + 1)

 

a + b + c  =  7

hectictar Mar 30, 2018
edited by hectictar  Mar 30, 2018

15 Online Users

avatar