+0  
 
0
1488
1
avatar+655 

Find $a+b+c$, given that $x+y\neq -1$ and \begin{align*} ax+by+c&=x+7,\\ a+bx+cy&=2x+6y,\\ ay+b+cx&=4x+y. \end{align*}

 Mar 30, 2018

Best Answer 

 #1
avatar+9481 
+2

Find  \(a+b+c\) , given that  \(x+y\neq -1\)  and  \( \begin{align*} ax+by+c&=x+7,\\ a+bx+cy&=2x+6y,\\ ay+b+cx&=4x+y. \end{align*}\)

 

-----------------------------------------------------------------------------------------------------------------------

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (ax + by + c) + (a + bx + cy) + (ay + b + cx)

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (x + 7) + (2x + 6y) + (4x + y)

 

ax + by + c + a + bx + cy + ay + b + cx  =  x + 7 + 2x + 6y + 4x + y

 

ax + bx + cx + ay + by + cy + a + b + c  =  7x + 7y + 7

 

x(a + b + c) + y(a + b + c) + 1(a + b + c)  =  7(x + y + 1)

 

(a + b + c)(x + y + 1)  =  7( x + y + 1)

 

a + b + c  =  7

 Mar 30, 2018
edited by hectictar  Mar 30, 2018
 #1
avatar+9481 
+2
Best Answer

Find  \(a+b+c\) , given that  \(x+y\neq -1\)  and  \( \begin{align*} ax+by+c&=x+7,\\ a+bx+cy&=2x+6y,\\ ay+b+cx&=4x+y. \end{align*}\)

 

-----------------------------------------------------------------------------------------------------------------------

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (ax + by + c) + (a + bx + cy) + (ay + b + cx)

 

(ax + by + c) + (a + bx + cy) + (ay + b + cx)  =  (x + 7) + (2x + 6y) + (4x + y)

 

ax + by + c + a + bx + cy + ay + b + cx  =  x + 7 + 2x + 6y + 4x + y

 

ax + bx + cx + ay + by + cy + a + b + c  =  7x + 7y + 7

 

x(a + b + c) + y(a + b + c) + 1(a + b + c)  =  7(x + y + 1)

 

(a + b + c)(x + y + 1)  =  7( x + y + 1)

 

a + b + c  =  7

hectictar Mar 30, 2018
edited by hectictar  Mar 30, 2018

2 Online Users

avatar