+0  
 
0
1200
2
avatar+1793 

Find a base 7 three-digit number which has its digits reversed when expressed in base 9. (You do not need to indicate the base with a subscript for this answer.)

Mellie  Jun 7, 2015

Best Answer 

 #2
avatar+93289 
+10

Let the number be XYZ       XY and Z are all 1 digit numbers between 0 and 6 inclusive

X and Z cannot by 0

Z must be smaller than X

So Y could possible be 0,12,3,4,5,6

So X could possible be 2,3,4,5,6

So Z could possible be 1,2,3,4,5



$$\\X*7^2+Y*7+Z=Z*9^2+Y*9+X\\\\
49X+7Y+Z=81Z+9Y+X\\\\$$

 

I might just use trial and error Mellie

Try Z=1

49X+7Y+1=81*1+9Y+X

48X-2Y=80

24X-Y= 40                   Multiples of 24 are 24,48,  Neither of these - an allowed y =40

so Z is not 1 

Try Z=2

49X+7Y+2=81*2+9Y+X

48X-2Y=160        

24X-Y=80                 Multiples of 24 are 24,48,72,96  Neither of these - an allowed y =80

so Z is not 2

Try Z=3

49X+7Y+3=81*3+9Y+X

48X-2Y=240          

24X-Y=120              The first multiple of 24 that is BIGGER than or equal to 120 is 120

SO Z can be 3, X=5 and Y=0

 

$$\\\mathbf{503_7=305_9}$$  

 

check

$${\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{49}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}} = {\mathtt{248}}$$

$${\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{81}}{\mathtt{\,\small\textbf+\,}}{\mathtt{5}} = {\mathtt{248}}$$                     (Edited: Thanks Chris )

There might be a much quicker way of doing this 

Melody  Jun 8, 2015
 #2
avatar+93289 
+10
Best Answer

Let the number be XYZ       XY and Z are all 1 digit numbers between 0 and 6 inclusive

X and Z cannot by 0

Z must be smaller than X

So Y could possible be 0,12,3,4,5,6

So X could possible be 2,3,4,5,6

So Z could possible be 1,2,3,4,5



$$\\X*7^2+Y*7+Z=Z*9^2+Y*9+X\\\\
49X+7Y+Z=81Z+9Y+X\\\\$$

 

I might just use trial and error Mellie

Try Z=1

49X+7Y+1=81*1+9Y+X

48X-2Y=80

24X-Y= 40                   Multiples of 24 are 24,48,  Neither of these - an allowed y =40

so Z is not 1 

Try Z=2

49X+7Y+2=81*2+9Y+X

48X-2Y=160        

24X-Y=80                 Multiples of 24 are 24,48,72,96  Neither of these - an allowed y =80

so Z is not 2

Try Z=3

49X+7Y+3=81*3+9Y+X

48X-2Y=240          

24X-Y=120              The first multiple of 24 that is BIGGER than or equal to 120 is 120

SO Z can be 3, X=5 and Y=0

 

$$\\\mathbf{503_7=305_9}$$  

 

check

$${\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{49}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}} = {\mathtt{248}}$$

$${\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{81}}{\mathtt{\,\small\textbf+\,}}{\mathtt{5}} = {\mathtt{248}}$$                     (Edited: Thanks Chris )

There might be a much quicker way of doing this 

Melody  Jun 8, 2015
 #3
avatar+88775 
+5

Nice answer, Melody.....

 

BTW....I think Melody meant to write.......  3(81) + 5    =  243 + 5  = 248

 

CPhill  Jun 8, 2015

17 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.