+0  
 
0
107
2
avatar+644 

Find a closed form for 
 \(S_n = 1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n!.\)

for integer n >= 1 Your response should have a factorial.

waffles  Feb 14, 2018
 #1
avatar
+1

Here is the closed form, but now you have to prove it !!!

S(n) =[n + 1]! - 1

Hint: nn! = [n + 1]! - n!

Guest Feb 14, 2018
 #2
avatar+86859 
+1

 

 

I'm stealing something here that I learned from heureka.....so, really....he should get the credit  !!!!

 

He noted that

 

n * n!  =

( [ n + 1 ]  - 1) * n! =

(n + 1)n! - n!  =

(n + 1)! - n!

 

So  we have the following

 

     1 * 1!           =    2!  -  1!

+   2 * 2!           =    3!  -  2!

+   3 * 3!           =    4!  -  3!

+   4 * 4!           =    5!  -  4!

+   .......

+   n * n!           =  (n + 1)!  - (n)! 

 

The terms in red  will "cancel"  and we will  be left with

 

Sum  = ( n + 1)!  - 1!  =

 

Sum  =  (n + 1)!  -  1

 

 

cool cool cool

CPhill  Feb 14, 2018
edited by CPhill  Feb 14, 2018

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.