+0  
 
0
298
1
avatar

Find a degree 3 polynomial that has zeros - 3, 1 and 6 and in which the coefficient of x^2 is -12

Guest May 19, 2015

Best Answer 

 #1
avatar+78755 
+5

P(x) = (x+3)(x - 1) (x - 6)  = x^3 - 4x^2 - 15x + 18

 

So....to have a coefficient of -12 on the x^2 term, we need  this

 

P(x) = (3) [ x^3 - 4x^2 - 15x + 18]  =  3x^3 - 12x^2 - 45x + 54

 

CPhill  May 19, 2015
Sort: 

1+0 Answers

 #1
avatar+78755 
+5
Best Answer

P(x) = (x+3)(x - 1) (x - 6)  = x^3 - 4x^2 - 15x + 18

 

So....to have a coefficient of -12 on the x^2 term, we need  this

 

P(x) = (3) [ x^3 - 4x^2 - 15x + 18]  =  3x^3 - 12x^2 - 45x + 54

 

CPhill  May 19, 2015

5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details