We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
200
1
avatar

Find a direction vector \(\mathbf{d} = \begin{pmatrix}d_1 \\ d_2 \\d_3 \end{pmatrix}\)

for the line through B = (1, 1, 2) and C= (2, 3, 1) such that \(d_1 + d_2 + d_3 = 10.\)

 Mar 14, 2019
 #1
avatar+23273 
+2

Find a direction vector

\(\mathbf{d} = \begin{pmatrix}d_1 \\ d_2 \\d_3 \end{pmatrix}\)
for the line through

\(B = (1, 1, 2)\) and \(C= (2, 3, 1) \)

such that

\(d_1 + d_2 + d_3 = 10\).

 

Line:

\(\begin{array}{|rcll|} \hline \vec{x} &=& \vec{B} + \underbrace{\lambda \left( \vec{C} - \vec{B} \right) }_{=\vec{d}} \\\\ \vec{d} &=& \lambda \left( \vec{C} - \vec{B} \right) \\ \vec{d} &=& \lambda \begin{pmatrix}2-1 \\ 3-1 \\1-2 \end{pmatrix} \\ \vec{d} &=& \lambda \begin{pmatrix}1 \\ 2 \\ -1 \end{pmatrix} \\ \begin{pmatrix}d_1 \\ d_2 \\d_3 \end{pmatrix} &=& \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \\\\ && d_1 = \lambda \\ && d_2 =2\lambda \\ && d_3 = -\lambda \\ \hline && d_1+d_2+d_3 = \lambda+2\lambda -\lambda \\ && 10 = 2\lambda \\ && \lambda =\dfrac{10}{2} \\ && \lambda = 5 \\\\ \vec{d} &=& 5 \begin{pmatrix}1 \\ 2 \\ -1 \end{pmatrix} \\ \mathbf{\vec{d}} & \mathbf{=} & \mathbf{ \begin{pmatrix} 5 \\ 10 \\ -5 \end{pmatrix} } \\ \hline \end{array}\)

 

laugh

 Mar 15, 2019

42 Online Users