+0  
 
0
1108
1
avatar

Find a direction vector \(\mathbf{d} = \begin{pmatrix}d_1 \\ d_2 \\d_3 \end{pmatrix}\)

for the line through B = (1, 1, 2) and C= (2, 3, 1) such that \(d_1 + d_2 + d_3 = 10.\)

 Mar 14, 2019
 #1
avatar+26388 
+2

Find a direction vector

\(\mathbf{d} = \begin{pmatrix}d_1 \\ d_2 \\d_3 \end{pmatrix}\)
for the line through

\(B = (1, 1, 2)\) and \(C= (2, 3, 1) \)

such that

\(d_1 + d_2 + d_3 = 10\).

 

Line:

\(\begin{array}{|rcll|} \hline \vec{x} &=& \vec{B} + \underbrace{\lambda \left( \vec{C} - \vec{B} \right) }_{=\vec{d}} \\\\ \vec{d} &=& \lambda \left( \vec{C} - \vec{B} \right) \\ \vec{d} &=& \lambda \begin{pmatrix}2-1 \\ 3-1 \\1-2 \end{pmatrix} \\ \vec{d} &=& \lambda \begin{pmatrix}1 \\ 2 \\ -1 \end{pmatrix} \\ \begin{pmatrix}d_1 \\ d_2 \\d_3 \end{pmatrix} &=& \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \\\\ && d_1 = \lambda \\ && d_2 =2\lambda \\ && d_3 = -\lambda \\ \hline && d_1+d_2+d_3 = \lambda+2\lambda -\lambda \\ && 10 = 2\lambda \\ && \lambda =\dfrac{10}{2} \\ && \lambda = 5 \\\\ \vec{d} &=& 5 \begin{pmatrix}1 \\ 2 \\ -1 \end{pmatrix} \\ \mathbf{\vec{d}} & \mathbf{=} & \mathbf{ \begin{pmatrix} 5 \\ 10 \\ -5 \end{pmatrix} } \\ \hline \end{array}\)

 

laugh

 Mar 15, 2019

1 Online Users

avatar