+0  
 
+1
333
1
avatar

Find $a$ if the point $(3,a)$ is on the line that passes through $(-2,7)$ and $(5,-3)$.

Guest Nov 19, 2017

Best Answer 

 #1
avatar+7155 
+1

the slope between  (-2, 7)  and  (5, -3)   =   [ -3 - 7 ] / [ 5 - -2 ]   =   -10/7

 

And since  (3, a)  lies on the same line as those two points, then we know.....

 

the slope between  (3, a)  and  (-2, 7)   =   -10/7

 

[ 7 - a ] / [ -2 - 3 ]   =   -10/7

 

[ 7 - a ] / [ -5 ]   =   -10/7            Multiply both sides by  -5 .

 

7 - a   =   50/7                           Subtract  7  from both sides.

 

-a   =   50/7 - 7

 

-a   =   50/7 - 49/7

 

-a   =   1/7

 

 a   =   -1/7                    And here's a graph:  https://www.desmos.com/calculator/prq2oggmcv

hectictar  Nov 20, 2017
 #1
avatar+7155 
+1
Best Answer

the slope between  (-2, 7)  and  (5, -3)   =   [ -3 - 7 ] / [ 5 - -2 ]   =   -10/7

 

And since  (3, a)  lies on the same line as those two points, then we know.....

 

the slope between  (3, a)  and  (-2, 7)   =   -10/7

 

[ 7 - a ] / [ -2 - 3 ]   =   -10/7

 

[ 7 - a ] / [ -5 ]   =   -10/7            Multiply both sides by  -5 .

 

7 - a   =   50/7                           Subtract  7  from both sides.

 

-a   =   50/7 - 7

 

-a   =   50/7 - 49/7

 

-a   =   1/7

 

 a   =   -1/7                    And here's a graph:  https://www.desmos.com/calculator/prq2oggmcv

hectictar  Nov 20, 2017

15 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.