+0  
 
+1
48
1
avatar

Find $a$ if the point $(3,a)$ is on the line that passes through $(-2,7)$ and $(5,-3)$.

Guest Nov 19, 2017

Best Answer 

 #1
avatar+5573 
+1

the slope between  (-2, 7)  and  (5, -3)   =   [ -3 - 7 ] / [ 5 - -2 ]   =   -10/7

 

And since  (3, a)  lies on the same line as those two points, then we know.....

 

the slope between  (3, a)  and  (-2, 7)   =   -10/7

 

[ 7 - a ] / [ -2 - 3 ]   =   -10/7

 

[ 7 - a ] / [ -5 ]   =   -10/7            Multiply both sides by  -5 .

 

7 - a   =   50/7                           Subtract  7  from both sides.

 

-a   =   50/7 - 7

 

-a   =   50/7 - 49/7

 

-a   =   1/7

 

 a   =   -1/7                    And here's a graph:  https://www.desmos.com/calculator/prq2oggmcv

hectictar  Nov 20, 2017
Sort: 

1+0 Answers

 #1
avatar+5573 
+1
Best Answer

the slope between  (-2, 7)  and  (5, -3)   =   [ -3 - 7 ] / [ 5 - -2 ]   =   -10/7

 

And since  (3, a)  lies on the same line as those two points, then we know.....

 

the slope between  (3, a)  and  (-2, 7)   =   -10/7

 

[ 7 - a ] / [ -2 - 3 ]   =   -10/7

 

[ 7 - a ] / [ -5 ]   =   -10/7            Multiply both sides by  -5 .

 

7 - a   =   50/7                           Subtract  7  from both sides.

 

-a   =   50/7 - 7

 

-a   =   50/7 - 49/7

 

-a   =   1/7

 

 a   =   -1/7                    And here's a graph:  https://www.desmos.com/calculator/prq2oggmcv

hectictar  Nov 20, 2017

11 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details