We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
576
1
avatar

Find a monic quartic polynomial f(x) with rational coefficients whose roots include x = 2 - 3(sqrt2) and x = 1 - sqrt3. Give your answer in expanded form.

 Feb 20, 2018
 #1
avatar+99592 
+1

If   2 - 3sqrt (2)  is a root so is its conjugate, 2 + 3sqrt(2)

And if 1 - sqrt (3)  is a root then so is  1 + sqrt(3).....so we have

 

[ x - (2 - 3sqrt (2) ]  [ x -  (2 + 3sqrt(2) ] [ x - ( 1 - sqrt(3) ] [ x - ( 1 + sqrt (3) ]     simplify

 

[ x^2 - x(2 - 3sqrt (2) - x (2 + 3sqrt (2) + 4 - 18 ]  [ x - ( 1 - sqrt(3) ] [ x - ( 1 + sqrt (3) ]    

 

[ x^2 - 4x - 14 ]   [  x^2 - x(1 - sqrt (3) - x (1 + sqrt (3) + 1 - 3 ]

 

  [ x^2 - 4x - 14 ] [ x^2 -2x - 2 ] =

 

x^4  - 6x^3 - 8x^2 + 36x + 28

 

 

 

cool cool cool

 Feb 20, 2018

34 Online Users

avatar
avatar
avatar