Processing math: 100%
 
+0  
 
0
4833
1
avatar+619 

Find a polynomial $f(x)$ of degree $5$ such that both of these properties hold:

 $f(x)-1$ is divisible by $(x-1)^3$.

 $f(x)$ is divisible by $x^3$.

 Jan 23, 2018
 #1
avatar+26396 
+3

Find a polynomial $f(x)$ of degree $5$ such that both of these properties hold:
$f(x)-1$ is divisible by $(x-1)^3$.
$f(x)$ is divisible by $x^3$.


1.  f(x) is divisible by x3  ?

 

Let f(x)=a(xx1)(xx2)(xx3)(xx4)(xx5) is a polynomial of degree 5.If f(x) is divisible by x3, than x1=x2=x3=0f(x)=a(x0)(x0)(x0)(xx4)(xx5)f(x)=ax3(xx4)(xx5) This polynom is divisible by x3expand to:f(x)=ax5a(x4+x5)x4+ax4x5x3Let A=a B=a(x4+x5), and  C=ax4x5 finally we have:f(x)=Ax5+Bx4+Cx3(1) This polynom is divisible by x3

 

2.  f(x)1 is divisible by (x1)3  ?

 

Say P(x) is a polynom divisible by (x1)3 .Set:P(x)=b(x1)3The root is x=1 soP(1)=b(11)3=0Set also: P(x)=3b(x1)2soP(1)=3b(11)2=0Set finally: P(x)=6b(x1)soP(1)=6b(11)2=0ConclusionIf P(x) is divisible by (x1)3, so P(1)=P(1)=P(1)=0(2) at the root x=1 

 

We set:1)f(x)1=P(x)|f(x)1 and P(x) are divisible by (x1)3 f(1)1=P(1)=0|(2)2)(f(x)1)=P(x)f(x)=P(x)f(1)=P(1)=0|(2)3)(f(x)1)=P(x)f(x)=P(x)f(1)=P(1)=0|(2)

 

We see:f(1)1=0(3)f(1)=0(4)f(1)=0(5)

 

We calculate:f(x)=Ax5+Bx4+Cx3f(x)1=Ax5+Bx4+Cx31f(1)1=A+B+C1=0|(3)f(x)=5Ax4+4Bx3+3Cx2f(1)=5A+4B+3C=0|(4)f(x)=20Ax3+12Bx2+6Cxf(1)=20A+12B+6C=0|(5)

 

Solve the Simultaneous Equations, we calculate A B C  :A+B+C1=0A+B+C=15A+4B+3C=020A+12B+6C=0

 

Cramer's Rule:

1A+1B+1C=15A+4B+3C=020A+12B+6C=0Determinant denominator=|11154320126|=146+5121+201320411123516=24+60+60803630=2

 

A=|1110430126|2=14611232=122A=6B=|1115032006|2=20135162=302B=15C=|11154020120|2=512120412=202C=10

 

The Polynom f(x)=Ax5+Bx4+Cx3 with A=6 B=15, and  C=10f(x)=6x515x4+10x3

 

Proof:

f(3)=6351534+1033=14581215+270=513f(3)33=51333=19 f(3)1(31)3=513123=5128=64 

 

 

laugh

 Jan 25, 2018
edited by heureka  May 29, 2020

3 Online Users

avatar
avatar