+0  
 
0
72
1
avatar+378 

Find all complex numbers z satisfying the equation (z+1)/(z-1) = i

waffles  Oct 29, 2017

Best Answer 

 #1
avatar+18715 
+1

Find all complex numbers z satisfying the equation (z+1)/(z-1) = i

 

\(\begin{array}{|lrcll|} \hline & \dfrac{z+1}{z-1} &=& i \quad & | \quad z = a+bi \\\\ & \dfrac{a+bi+1}{a+bi-1} &=& i \\\\ & a+bi+1 &=& i(a+bi-1) \\\\ & a+bi+1 - i(a+bi-1)&=& 0 \\\\ & a+bi+1 - ia-bi^2+i&=& 0 \quad & | \quad i^2 = -1\\ \\ & a+bi+1 - ia+b+i&=& 0 \\ \\ & a+bi+1 - ia+b+i&=& 0 \\ \\ & ( a+b+1) + (b-a+1) i &=& 0 \\ \\ \hline (1) & (a+b+1) &=& 0 \\ (2) & (b-a+1) &=& 0 \\ \hline (1) + (2) & 2b+2 &=& 0 \quad & | \quad : 2 \\ & b+1 &=& 0 \\ & \mathbf{b} &\mathbf{=}& \mathbf{-1} \\ \hline (1) - (2) & 2a &=& 0 \quad & | \quad : 2 \\ & \mathbf{a} &\mathbf{=}& \mathbf{0} \\ \hline \end{array}\)


\(z = a+bi \\ z = 0 -i \\ \mathbf{z = -i}\)

 

laugh

heureka  Oct 30, 2017
Sort: 

1+0 Answers

 #1
avatar+18715 
+1
Best Answer

Find all complex numbers z satisfying the equation (z+1)/(z-1) = i

 

\(\begin{array}{|lrcll|} \hline & \dfrac{z+1}{z-1} &=& i \quad & | \quad z = a+bi \\\\ & \dfrac{a+bi+1}{a+bi-1} &=& i \\\\ & a+bi+1 &=& i(a+bi-1) \\\\ & a+bi+1 - i(a+bi-1)&=& 0 \\\\ & a+bi+1 - ia-bi^2+i&=& 0 \quad & | \quad i^2 = -1\\ \\ & a+bi+1 - ia+b+i&=& 0 \\ \\ & a+bi+1 - ia+b+i&=& 0 \\ \\ & ( a+b+1) + (b-a+1) i &=& 0 \\ \\ \hline (1) & (a+b+1) &=& 0 \\ (2) & (b-a+1) &=& 0 \\ \hline (1) + (2) & 2b+2 &=& 0 \quad & | \quad : 2 \\ & b+1 &=& 0 \\ & \mathbf{b} &\mathbf{=}& \mathbf{-1} \\ \hline (1) - (2) & 2a &=& 0 \quad & | \quad : 2 \\ & \mathbf{a} &\mathbf{=}& \mathbf{0} \\ \hline \end{array}\)


\(z = a+bi \\ z = 0 -i \\ \mathbf{z = -i}\)

 

laugh

heureka  Oct 30, 2017

10 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details