+0  
 
0
887
1
avatar+644 

Find all complex numbers z satisfying the equation (z+1)/(z-1) = i

waffles  Oct 29, 2017

Best Answer 

 #1
avatar+20024 
+1

Find all complex numbers z satisfying the equation (z+1)/(z-1) = i

 

\(\begin{array}{|lrcll|} \hline & \dfrac{z+1}{z-1} &=& i \quad & | \quad z = a+bi \\\\ & \dfrac{a+bi+1}{a+bi-1} &=& i \\\\ & a+bi+1 &=& i(a+bi-1) \\\\ & a+bi+1 - i(a+bi-1)&=& 0 \\\\ & a+bi+1 - ia-bi^2+i&=& 0 \quad & | \quad i^2 = -1\\ \\ & a+bi+1 - ia+b+i&=& 0 \\ \\ & a+bi+1 - ia+b+i&=& 0 \\ \\ & ( a+b+1) + (b-a+1) i &=& 0 \\ \\ \hline (1) & (a+b+1) &=& 0 \\ (2) & (b-a+1) &=& 0 \\ \hline (1) + (2) & 2b+2 &=& 0 \quad & | \quad : 2 \\ & b+1 &=& 0 \\ & \mathbf{b} &\mathbf{=}& \mathbf{-1} \\ \hline (1) - (2) & 2a &=& 0 \quad & | \quad : 2 \\ & \mathbf{a} &\mathbf{=}& \mathbf{0} \\ \hline \end{array}\)


\(z = a+bi \\ z = 0 -i \\ \mathbf{z = -i}\)

 

laugh

heureka  Oct 30, 2017
 #1
avatar+20024 
+1
Best Answer

Find all complex numbers z satisfying the equation (z+1)/(z-1) = i

 

\(\begin{array}{|lrcll|} \hline & \dfrac{z+1}{z-1} &=& i \quad & | \quad z = a+bi \\\\ & \dfrac{a+bi+1}{a+bi-1} &=& i \\\\ & a+bi+1 &=& i(a+bi-1) \\\\ & a+bi+1 - i(a+bi-1)&=& 0 \\\\ & a+bi+1 - ia-bi^2+i&=& 0 \quad & | \quad i^2 = -1\\ \\ & a+bi+1 - ia+b+i&=& 0 \\ \\ & a+bi+1 - ia+b+i&=& 0 \\ \\ & ( a+b+1) + (b-a+1) i &=& 0 \\ \\ \hline (1) & (a+b+1) &=& 0 \\ (2) & (b-a+1) &=& 0 \\ \hline (1) + (2) & 2b+2 &=& 0 \quad & | \quad : 2 \\ & b+1 &=& 0 \\ & \mathbf{b} &\mathbf{=}& \mathbf{-1} \\ \hline (1) - (2) & 2a &=& 0 \quad & | \quad : 2 \\ & \mathbf{a} &\mathbf{=}& \mathbf{0} \\ \hline \end{array}\)


\(z = a+bi \\ z = 0 -i \\ \mathbf{z = -i}\)

 

laugh

heureka  Oct 30, 2017

46 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.