Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1614
1
avatar+123 

Find all pairs $(x,y)$ of real numbers $(x,y)$ such that $x + y = 10$ and $x^2 + y^2 = 56$.

 May 5, 2020
 #1
avatar
+2

Given x+y=10 it follows, x=10y thus, x2=(10y)2=(10020y+y2) (1)

 

x2+y2=56  (2)

substitute (1) into (2)

10020y+y2+y2=56 simplify and subtract 56 (Setting the quadratic equation equals zero)

2y220y+44=0 Divide by 2

y210y+22=0

Use the Quadratic formula 

x=b±b24ac2a            (a=1, b=-10 , c=22)

x=10±(10)2412221=5+3  and 53

Now using x+y=10 again, substitute the x value to find y

5+3+y=10

y=10(5+3)

y=53

Substitute the other x value

53+y=10

y=10(53)

y=5+3

 

Thus the pairs of real numbers that satisfy this:

(5+3,53) & (53,5+3)

 May 5, 2020

0 Online Users