Find all pairs $(x,y)$ of real numbers $(x,y)$ such that $x + y = 10$ and $x^2 + y^2 = 56$.
Given x+y=10 it follows, x=10−y thus, x2=(10−y)2=(100−20y+y2) (1)
x2+y2=56 (2)
substitute (1) into (2)
100−20y+y2+y2=56 simplify and subtract 56 (Setting the quadratic equation equals zero)
2y2−20y+44=0 Divide by 2
y2−10y+22=0
Use the Quadratic formula
x=−b±√b2−4ac2a (a=1, b=-10 , c=22)
x=10±√(−10)2−4∗1∗222∗1=5+√3 and 5−√3
Now using x+y=10 again, substitute the x value to find y
5+√3+y=10
y=10−(5+√3)
y=5−√3
Substitute the other x value
5−√3+y=10
y=10−(5−√3)
y=5+√3
Thus the pairs of real numbers that satisfy this:
(5+√3,5−√3) & (5−√3,5+√3)