Find all real numbers \(a\) that satisfy:
\([\frac{1}{a^3 + 7} -7 = \frac{-a^3}{a^3 + 7}]\)
1/ ( a^3 + 7) - 7 = -a^3 / ( a^3 + 7) rearrange as
1 / (a^3 + 7) + a^3/ (a^3 + 7) = 7
(1 + a^3) = 7 ( a^3 + 7)
1 + a^3 7a^3 + 49
-6a^3 = 48
a^3 = -48 / 6
a^3 = -8
a = -2
1/ ( a^3 + 7) - 7 = -a^3 / ( a^3 + 7) rearrange as
1 / (a^3 + 7) + a^3/ (a^3 + 7) = 7
(1 + a^3) = 7 ( a^3 + 7)
1 + a^3 7a^3 + 49
-6a^3 = 48
a^3 = -48 / 6
a^3 = -8
a = -2
Whats the point of copying CPhill's answer?
There is no need for the same work twice. How about next time do it yourself? :)