+0  
 
0
64
2
avatar

Find all solutions  x of the inequality

5/24 + |x - 1/3| < 5/16.

Express your answer in interval notation, simplifying all fractions in your answer.

 Nov 16, 2020

Best Answer 

 #2
avatar+114221 
+1

5/24  +  l x - 1/3 l  <   5/16       subtract  3/24  from  both  sides

 

l x - 1/3 l   <   5/16  - 5/24       get a common  denominator (48) on the right

 

l x - 1/3 l  <  15/48 - 10/48

 

l x - 1/3 l  <  5/48

 

We have two equations here

 

x - 1/3   <   5/48                     x - 1/3   >  -5 / 48

 

                    add 1/3 to both sides

 

x <  5/48 + 1/3                     x >  -5/48 + 1/3

 

x <  5/48 + 16/48                 x >  -5/48 + 16/48

 

x <  21/48                           x  >   11/48

 

x <  7/16   

 

So the solution is       11/48 < x < 7/16

 

 

cool cool cool

 Nov 16, 2020
 #1
avatar
0

Convert entire equation to common denominator 48

10/48  + |x-16/48| < 15/48    subtract 10/48 from both sides of the equation

|x-16/48| < 5/48       now solve the following

 

x -16/48 < 5/48        or     x - 16/48 > 5/48  

x < 21/48                          x > 21/48                 you should be able to take it from here....

 Nov 16, 2020
 #2
avatar+114221 
+1
Best Answer

5/24  +  l x - 1/3 l  <   5/16       subtract  3/24  from  both  sides

 

l x - 1/3 l   <   5/16  - 5/24       get a common  denominator (48) on the right

 

l x - 1/3 l  <  15/48 - 10/48

 

l x - 1/3 l  <  5/48

 

We have two equations here

 

x - 1/3   <   5/48                     x - 1/3   >  -5 / 48

 

                    add 1/3 to both sides

 

x <  5/48 + 1/3                     x >  -5/48 + 1/3

 

x <  5/48 + 16/48                 x >  -5/48 + 16/48

 

x <  21/48                           x  >   11/48

 

x <  7/16   

 

So the solution is       11/48 < x < 7/16

 

 

cool cool cool

CPhill Nov 16, 2020

21 Online Users

avatar