+0  
 
0
1028
1
avatar

find all the complex cube roots of z=8. write each root in rectangular form.

Guest Aug 1, 2014

Best Answer 

 #1
avatar+4472 
+5

cube root of z = 8 

$$z^{3} = 8$$

$$z^{3} - 8 =0$$

$$(z-2)(z^{2}+2z+4)= 0$$

One solution is z - 2 = 0 --> z = 2.

For the other polynomial, let's use the quadratic formula where a = 1, b = 2, & c = 4: $$\begin{array}{*{20}c} {z = \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}}} & {{\rm{}}} \\ \end{array}$$

$$\begin{array}{*{20}c} {z = \frac{{ - 2 \pm \sqrt {4 - 16} }}{{2}}} & {{\rm{}}} \\ \end{array}$$ 

$$\begin{array}{*{20}c} {z = \frac{{-2 \pm \sqrt{-12} }}{{2}}} & {{\rm{}}} \\ \end{array}$$

We get z = -1 + 1.732050808i & -1 - 1.732050808i

The three complex roots are z = 2, z = -1 + 1.732050808i, & z = -1 - 1.732050808i.

AzizHusain  Aug 1, 2014
 #1
avatar+4472 
+5
Best Answer

cube root of z = 8 

$$z^{3} = 8$$

$$z^{3} - 8 =0$$

$$(z-2)(z^{2}+2z+4)= 0$$

One solution is z - 2 = 0 --> z = 2.

For the other polynomial, let's use the quadratic formula where a = 1, b = 2, & c = 4: $$\begin{array}{*{20}c} {z = \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}}} & {{\rm{}}} \\ \end{array}$$

$$\begin{array}{*{20}c} {z = \frac{{ - 2 \pm \sqrt {4 - 16} }}{{2}}} & {{\rm{}}} \\ \end{array}$$ 

$$\begin{array}{*{20}c} {z = \frac{{-2 \pm \sqrt{-12} }}{{2}}} & {{\rm{}}} \\ \end{array}$$

We get z = -1 + 1.732050808i & -1 - 1.732050808i

The three complex roots are z = 2, z = -1 + 1.732050808i, & z = -1 - 1.732050808i.

AzizHusain  Aug 1, 2014

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.