+0  
 
0
6455
1
avatar

Find an equation of the line tangent to the curve defined by x^5+6xy+y^4=72 at the point(2,2).

 Feb 26, 2016
 #1
avatar+129845 
0

x^5+6xy+y^4=72 at the point(2,2)

 

Using implicit differenttiation, we have

 

5x^4  +  6y  + 6xy' + 4y^3y'  = 0 

 

y ' [ 6x + 4y^3 ]  =  - [ 5x^4 + 6y]

 

y ' =  - [ 5x^4 + 6y] / [ 6x +  4y^3]

 

The slope at [2,2] =  - [ 5(2)^4 + 6(2) ]  / [[ 6(2) + 4(2)^3]  =  - [ 80 + 12] / [ 12 + 32]  = [- [92 / 44] =

-[23/11]

 

So  the equation of the tangent line is

 

y = -(23/11)(x - 2) + 2  =

 

y = -(23/11)x + 46/11  + 2

 

y  = -(23/11)x + 68/11

 

Here's the graph :   https://www.desmos.com/calculator/man5p1joko

 

 

 

cool cool cool

 Feb 26, 2016

0 Online Users