Find an expression for cos(5θ) as a fifth-degree polynomial in the variable cosθ.
CPhil is probably going to give you the proper answer so I'll chime in with a method that's probably
above where you're currently at but is one of the more clever tricks in the toolbox
.cos(5θ)=Re(ei5θ)=Re((eiθ)5)=Re((cos(θ)+isin(θ))5)Now apply the binomial expansionRe(5∑k=0(5k)cosk(θ)(isin(θ))5−k)
We can see the only terms that are real will be k=1,3,5and we end up withcos(5θ)=cos5(θ)−10cos3(θ)sin2(θ)+5cos(θ)sin4(θ)
Oh, I see you need it entirely in cos(θ). Well we just do thiscos(5θ)=cos5(θ)−10cos3(θ)(1−cos2(θ))+5cos(θ)(1−cos2(θ))2
You can do the final simplification.
I'll use x instead of theta
cos (5x) =
cos(3x + 2x) =
cos3xcos2x - sin3xsin2x =
cos(x +2x)cos2x - sin(x +2x)sin2x =
[cosxcos2x - sinxsin2x]cos2x - [sinxcos2x + sin2xcosx]sin2x =
cosxcos^2(2x) - sinxsin2xcos2x - sinxsin2xcos2x - cosxsin^2(2x) =
cosx [ cos^2(2x) - sin^2(2x] - 2sinx [ sin2xcos2x] =
cosx [cos^2(2x) - (1 - cos^2(2x) ] - 2sinx [ 2sinxcosx * (2cos^2x - 1) ] =
cosx [ 2cos^2(2x) - 1] - 2sinx [ 4sinxcos^3x - 2sinxcosx ] =
2cosx [cos(2x) ]^2 - cosx - 8sin^2xcos^3x + 4sin^2xcosx =
2cosx [ 2cos^2x - 1]^2 - cosx - 8[(1-cos^2x)cos^3x) ] + 4[(1-cos^2x )]cosx =
2cosx [ 4cos^4x - 4cos^2x + 1] - cosx - 8 [ cos^3x -cos^5x] + 4[ cosx - cos^3x ] =
8cos^5x - 8cos^3x + 2cosx - cosx - 8cos^3x + 8cos^5x + 4cosx - 4cos^3x =
16cos^5(x) - 20cos^3(x) + 5cos(x)
Someone should verify this....I could have made an error....!!!!