Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1083
3
avatar+895 

Find an expression for cos(5θ) as a fifth-degree polynomial in the variable cosθ.

 May 11, 2019
edited by AdamTaurus  May 11, 2019
 #1
avatar+6251 
+1

CPhil is probably going to give you the proper answer so I'll chime in with a method that's probably

above where you're currently at but is one of the more clever tricks in the toolbox

 

.cos(5θ)=Re(ei5θ)=Re((eiθ)5)=Re((cos(θ)+isin(θ))5)Now apply the binomial expansionRe(5k=0(5k)cosk(θ)(isin(θ))5k)

 

We can see the only terms that are real will be k=1,3,5and we end up withcos(5θ)=cos5(θ)10cos3(θ)sin2(θ)+5cos(θ)sin4(θ)

 

Oh, I see you need it entirely in cos(θ). Well we just do thiscos(5θ)=cos5(θ)10cos3(θ)(1cos2(θ))+5cos(θ)(1cos2(θ))2

 

You can do the final simplification.

 May 11, 2019
edited by Rom  May 11, 2019
 #2
avatar+895 
+1

Yeah, that answer is smarter than I am.

AdamTaurus  May 11, 2019
 #3
avatar+130466 
+1

I'll use x instead of theta

 

cos (5x)  =     

cos(3x + 2x) = 

cos3xcos2x - sin3xsin2x =    

cos(x +2x)cos2x - sin(x +2x)sin2x  =        

[cosxcos2x - sinxsin2x]cos2x  - [sinxcos2x + sin2xcosx]sin2x  =   

cosxcos^2(2x) - sinxsin2xcos2x - sinxsin2xcos2x - cosxsin^2(2x) =   

cosx [ cos^2(2x) - sin^2(2x] - 2sinx [ sin2xcos2x] = 

cosx [cos^2(2x) - (1 - cos^2(2x) ] - 2sinx [ 2sinxcosx * (2cos^2x - 1) ]  =

cosx [ 2cos^2(2x) - 1] - 2sinx [ 4sinxcos^3x - 2sinxcosx ] = 

2cosx [cos(2x) ]^2 - cosx  -  8sin^2xcos^3x + 4sin^2xcosx = 

2cosx [ 2cos^2x - 1]^2 - cosx - 8[(1-cos^2x)cos^3x) ] + 4[(1-cos^2x )]cosx  = 

2cosx [ 4cos^4x - 4cos^2x + 1] - cosx - 8 [ cos^3x -cos^5x] + 4[ cosx - cos^3x ]  =

8cos^5x - 8cos^3x + 2cosx - cosx - 8cos^3x + 8cos^5x + 4cosx - 4cos^3x =

 

16cos^5(x) - 20cos^3(x) + 5cos(x)

 

Someone should verify this....I could have made an error....!!!!

 

 

cool cool cool

 May 11, 2019
edited by CPhill  May 11, 2019

1 Online Users