+0  
 
+1
70
2
avatar+121 

Find \(\int_{0}^{\,5} {f(x)}\, dx\, \) if 

\(f(x)=\begin{cases} 3 & \textrm{for } x<3 \\ x & \textrm{for } x\ge 3. \end{cases}\)

 May 10, 2022
 #1
avatar+117498 
0

You have asked 22 questions and you have not even once responded to an answer.

 

Why should people help you?

 May 10, 2022
 #2
avatar+9457 
+1

Generally, for piecewise functions, you break the integral at the boundary points of the cases. In this problem, you break the integral at x = 3.

 

\(\newcommand{\dint}{\displaystyle\int} \dint_0^5 f(x)\,dx = \left(\dint_0^3 + \dint_3^5\right)f(x)\,dx = \dint_0^3 f(x) \,dx + \dint_3^5 f(x)\,dx\)

 

Now, you can use the fact that f(x) = 3 for 0 < x < 3 and f(x) = x for 3 < x < 5 to continue. Use the power rule of integration.

 May 10, 2022

7 Online Users

avatar