+0  
 
0
425
2
avatar

For triangle HJK, j = 31, m∠H = 132 degrees, m∠J = 21 degrees, and m∠K = 27 degrees. Find h to the nearest whole number.

 Feb 2, 2015

Best Answer 

 #1
avatar+20852 
+10

For triangle HJK, j = 31, m∠H = 132 degrees, m∠J = 21 degrees, and m∠K = 27 degrees. Find h to the nearest whole number.

$$\small{\text{
$
\tan{(132)}=\frac{h}{p} \qquad
\tan{(27)}=\frac{h}{q} \qquad p+q=31\ m
$
}}\\
\small{\text{
$
p=\frac{h}{\tan{(132)}} \qquad
q=\frac{h}{\tan{(27)}} \qquad \frac{h}{\tan{(132)}} +\frac{h}{\tan{(27)}}=31\ m
$
}}\\
\small{\text{
$
h* \left(
\frac{1}{\tan{(132)}} + \frac{1}{\tan{(27)}}
\right)=31\ m
$
}}\\
\small{\text{
$
h* \left(
-0.90040404430 + 1.96261050551
\right)=31\ m
$
}}\\
\small{\text{
$
h*1.06220646121 =31\ m
$
}}\\
\small{\text{
$
h =\frac{31}{1.06220646121}\ m = 29.1845334520\ m
$
}}\\
\small{\text{
h to the nearest whole number:
$
h = 29\ m
$
}}$$

.
 Feb 3, 2015
 #1
avatar+20852 
+10
Best Answer

For triangle HJK, j = 31, m∠H = 132 degrees, m∠J = 21 degrees, and m∠K = 27 degrees. Find h to the nearest whole number.

$$\small{\text{
$
\tan{(132)}=\frac{h}{p} \qquad
\tan{(27)}=\frac{h}{q} \qquad p+q=31\ m
$
}}\\
\small{\text{
$
p=\frac{h}{\tan{(132)}} \qquad
q=\frac{h}{\tan{(27)}} \qquad \frac{h}{\tan{(132)}} +\frac{h}{\tan{(27)}}=31\ m
$
}}\\
\small{\text{
$
h* \left(
\frac{1}{\tan{(132)}} + \frac{1}{\tan{(27)}}
\right)=31\ m
$
}}\\
\small{\text{
$
h* \left(
-0.90040404430 + 1.96261050551
\right)=31\ m
$
}}\\
\small{\text{
$
h*1.06220646121 =31\ m
$
}}\\
\small{\text{
$
h =\frac{31}{1.06220646121}\ m = 29.1845334520\ m
$
}}\\
\small{\text{
h to the nearest whole number:
$
h = 29\ m
$
}}$$

heureka Feb 3, 2015
 #2
avatar+27396 
+5

I think the sine rule might be the simplest approach here:

h/sin(H) = j/sin(J)

 

$${\mathtt{h}} = {\frac{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{132}}^\circ\right)}{\mathtt{\,\times\,}}{\mathtt{31}}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{21}}^\circ\right)}}} \Rightarrow {\mathtt{h}} = {\mathtt{64.284\: \!458\: \!526\: \!596\: \!557\: \!1}}$$

 

or h = 64 to the nearest whole number

 

triangle

 

I've assumed h is opposite angle H, j is opposite angle J etc.

.

 Feb 3, 2015

22 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.