+0  
 
0
267
2
avatar

For triangle HJK, j = 31, m∠H = 132 degrees, m∠J = 21 degrees, and m∠K = 27 degrees. Find h to the nearest whole number.

Guest Feb 2, 2015

Best Answer 

 #1
avatar+19197 
+10

For triangle HJK, j = 31, m∠H = 132 degrees, m∠J = 21 degrees, and m∠K = 27 degrees. Find h to the nearest whole number.

$$\small{\text{
$
\tan{(132)}=\frac{h}{p} \qquad
\tan{(27)}=\frac{h}{q} \qquad p+q=31\ m
$
}}\\
\small{\text{
$
p=\frac{h}{\tan{(132)}} \qquad
q=\frac{h}{\tan{(27)}} \qquad \frac{h}{\tan{(132)}} +\frac{h}{\tan{(27)}}=31\ m
$
}}\\
\small{\text{
$
h* \left(
\frac{1}{\tan{(132)}} + \frac{1}{\tan{(27)}}
\right)=31\ m
$
}}\\
\small{\text{
$
h* \left(
-0.90040404430 + 1.96261050551
\right)=31\ m
$
}}\\
\small{\text{
$
h*1.06220646121 =31\ m
$
}}\\
\small{\text{
$
h =\frac{31}{1.06220646121}\ m = 29.1845334520\ m
$
}}\\
\small{\text{
h to the nearest whole number:
$
h = 29\ m
$
}}$$

heureka  Feb 3, 2015
Sort: 

2+0 Answers

 #1
avatar+19197 
+10
Best Answer

For triangle HJK, j = 31, m∠H = 132 degrees, m∠J = 21 degrees, and m∠K = 27 degrees. Find h to the nearest whole number.

$$\small{\text{
$
\tan{(132)}=\frac{h}{p} \qquad
\tan{(27)}=\frac{h}{q} \qquad p+q=31\ m
$
}}\\
\small{\text{
$
p=\frac{h}{\tan{(132)}} \qquad
q=\frac{h}{\tan{(27)}} \qquad \frac{h}{\tan{(132)}} +\frac{h}{\tan{(27)}}=31\ m
$
}}\\
\small{\text{
$
h* \left(
\frac{1}{\tan{(132)}} + \frac{1}{\tan{(27)}}
\right)=31\ m
$
}}\\
\small{\text{
$
h* \left(
-0.90040404430 + 1.96261050551
\right)=31\ m
$
}}\\
\small{\text{
$
h*1.06220646121 =31\ m
$
}}\\
\small{\text{
$
h =\frac{31}{1.06220646121}\ m = 29.1845334520\ m
$
}}\\
\small{\text{
h to the nearest whole number:
$
h = 29\ m
$
}}$$

heureka  Feb 3, 2015
 #2
avatar+26619 
+5

I think the sine rule might be the simplest approach here:

h/sin(H) = j/sin(J)

 

$${\mathtt{h}} = {\frac{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{132}}^\circ\right)}{\mathtt{\,\times\,}}{\mathtt{31}}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{21}}^\circ\right)}}} \Rightarrow {\mathtt{h}} = {\mathtt{64.284\: \!458\: \!526\: \!596\: \!557\: \!1}}$$

 

or h = 64 to the nearest whole number

 

triangle

 

I've assumed h is opposite angle H, j is opposite angle J etc.

.

Alan  Feb 3, 2015

42 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details