+0  
 
0
77
10
avatar+110 

Find how many digits in the base 10 number 9^(9^9) has when written in base nine

Hans007  Feb 11, 2018

Best Answer 

 #6
avatar+91797 
+1

Guest, Your answer does not contradicted mine :)

 

This was the question:

Find how many digits in the base 10 number 9^(9^9) has when written in base nine

 

Your comment was

So, the number of digits =369,693,099 + 1 =369,693,100 digits - in base 10 

YES I agree,

This whole thing is in base 10

 

What I said is that the answer is 

it will have 9^9+1 digits = 387 420 490 digits (base 10) BUT this is for the base 9 answer.

 

To put it slightly differently:

The base 9 conversion of 9^(9^9) will have 387 420 490 digits, with the number of digits expressed in base 10,

If the number of digits was expressed in base 9 it would look bigger.

 

I can do the conversion if you want:

387420490/9 = 43 046 721 R1

43046721/9=     4 782 969 R0

4782969/9  =        531 441 R0

531441/9  =            59049  R0

59049/9 =                6561   R0

6561/9   =                 729    R0

729/9     =                   81    R0

81/9       =                     9    R0

9/9         =                      1   R0

1/9        =                       0   R1

 

So the number of digits base 9   is  1 000 000 001

 

This certainly is no surprise I expected it to be a 1 at the beginning and at the end with zeros in the middle. 

 

 

10^(10^10) base 10 = 10^10 000 000 000 = 1 followed by 10 000 000 000 zerso = 10 000 000 001 digits

I just discovered the pattern ...

 

2^(2^2) = 2^4 = 10000(base2) :     5 digits long base 10 and 5 base 10 = 101 base 2

3^(3^3)= 3^27 = 1 followed by 27 zeros in base 3 :    28 digits long base 10 which is 1001  base 3

4^(4^4) = 4^ 256 = 1 followed by 256 zeros base 4:   257 digits long base 10 which is 10001 base 4

...

by extension:

9^(9^9) base 10 will be 1 000 000 001 base 9 units long in base 9.  Which is exactly what I got when I did it the super long way!!!

Melody  Feb 11, 2018
edited by Melody  Feb 12, 2018
Sort: 

10+0 Answers

 #1
avatar
0

9^(9^9) =369,693,100 base 10

=812,298,765 base 9 [I think !!!].

Guest Feb 11, 2018
 #8
avatar
0

9^(9^9)=369693100 base 10 =852570531 base 9 = 9 digits

Guest Feb 11, 2018
 #2
avatar+91797 
0

Find how many digits in the base 10 number 9^(9^9) has when written in base nine

 

it will have 9^9+1 digits = 387 420 490 digits (base 10)

 

 

 

 

 

 

-------------

simple example ( I needed this to think through my answer)

2^(2^2) base 10 written in base 2

2^4=16=100002

So that is 2^2+1=5 digits base 10 

OR    510 = 1012

Melody  Feb 11, 2018
edited by Melody  Feb 11, 2018
 #3
avatar
+1

Melody: 9^(9^9) =9^(387,420,489) =387,420,489 x log(9) =369,693,099.631........etc.

So, the number of digits =369,693,099 + 1 =369,693,100 digits - in base 10

 

See Wolfram/Alpha Here:

http://www.wolframalpha.com/input/?i=9%5E9%5E9

Guest Feb 11, 2018
edited by Guest  Feb 11, 2018
 #6
avatar+91797 
+1
Best Answer

Guest, Your answer does not contradicted mine :)

 

This was the question:

Find how many digits in the base 10 number 9^(9^9) has when written in base nine

 

Your comment was

So, the number of digits =369,693,099 + 1 =369,693,100 digits - in base 10 

YES I agree,

This whole thing is in base 10

 

What I said is that the answer is 

it will have 9^9+1 digits = 387 420 490 digits (base 10) BUT this is for the base 9 answer.

 

To put it slightly differently:

The base 9 conversion of 9^(9^9) will have 387 420 490 digits, with the number of digits expressed in base 10,

If the number of digits was expressed in base 9 it would look bigger.

 

I can do the conversion if you want:

387420490/9 = 43 046 721 R1

43046721/9=     4 782 969 R0

4782969/9  =        531 441 R0

531441/9  =            59049  R0

59049/9 =                6561   R0

6561/9   =                 729    R0

729/9     =                   81    R0

81/9       =                     9    R0

9/9         =                      1   R0

1/9        =                       0   R1

 

So the number of digits base 9   is  1 000 000 001

 

This certainly is no surprise I expected it to be a 1 at the beginning and at the end with zeros in the middle. 

 

 

10^(10^10) base 10 = 10^10 000 000 000 = 1 followed by 10 000 000 000 zerso = 10 000 000 001 digits

I just discovered the pattern ...

 

2^(2^2) = 2^4 = 10000(base2) :     5 digits long base 10 and 5 base 10 = 101 base 2

3^(3^3)= 3^27 = 1 followed by 27 zeros in base 3 :    28 digits long base 10 which is 1001  base 3

4^(4^4) = 4^ 256 = 1 followed by 256 zeros base 4:   257 digits long base 10 which is 10001 base 4

...

by extension:

9^(9^9) base 10 will be 1 000 000 001 base 9 units long in base 9.  Which is exactly what I got when I did it the super long way!!!

Melody  Feb 11, 2018
edited by Melody  Feb 12, 2018
 #4
avatar
0

The above answer has it in base 10 however we need it to be in base 9. 

Guest Feb 11, 2018
 #5
avatar
0

9^(9^9) in base 10 =1,000,000,000 in base 9

Guest Feb 11, 2018
 #7
avatar+82944 
0

Nice, Melody !!!

 

 

cool cool cool

CPhill  Feb 11, 2018
 #9
avatar+91797 
+1

Thanks Chris :)

Melody  Feb 12, 2018

10 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details