+0  
 
0
584
2
avatar

Find t if the expansion of the product of x^3 - 4x^2 + 2x - 5 and x^2 + tx - 7 has no x^2 term.

 Dec 4, 2014

Best Answer 

 #1
avatar+20850 
+10

Find t if the expansion of the product of x^3 - 4x^2 + 2x - 5 and x^2 + tx - 7 has no x^2 term.

$$\small{\text{
$
(x^3 - 4x^2 + 2x - 5)*( x^2 + tx - 7) = tx^4-4tx^3+\textcolor[rgb]{1,0,0}{2tx^2}-5tx+x^5-4x^4-5x^3+\textcolor[rgb]{1,0,0}{23x^2}-14x+35
$
}}$$

$$\\ \small{\text{
Set $
\textcolor[rgb]{1,0,0}{2tx^2}+\textcolor[rgb]{1,0,0}{23x^2} = 0
$
than the product has no $x^2$, t must be a constant!
}}
\\\\
2tx^2 + 23x^2 = 0 \\\\
2tx^2 = - 23x^2 \quad | \quad : 2x^2 \\\\
t= -\frac{23}{2} = - 11.5$$

$$\small{\text{
$
\textcolor[rgb]{1,0,0}{t= -11.5}\qquad (x^3-4x^2+2x-5)*(x^2+\textcolor[rgb]{1,0,0}{(-11.5)}x-7) = x^5 - 15.5x^4+41x^3+43.5x+35
$
}}$$

There is no more $$x^2$$

.
 Dec 4, 2014
 #1
avatar+20850 
+10
Best Answer

Find t if the expansion of the product of x^3 - 4x^2 + 2x - 5 and x^2 + tx - 7 has no x^2 term.

$$\small{\text{
$
(x^3 - 4x^2 + 2x - 5)*( x^2 + tx - 7) = tx^4-4tx^3+\textcolor[rgb]{1,0,0}{2tx^2}-5tx+x^5-4x^4-5x^3+\textcolor[rgb]{1,0,0}{23x^2}-14x+35
$
}}$$

$$\\ \small{\text{
Set $
\textcolor[rgb]{1,0,0}{2tx^2}+\textcolor[rgb]{1,0,0}{23x^2} = 0
$
than the product has no $x^2$, t must be a constant!
}}
\\\\
2tx^2 + 23x^2 = 0 \\\\
2tx^2 = - 23x^2 \quad | \quad : 2x^2 \\\\
t= -\frac{23}{2} = - 11.5$$

$$\small{\text{
$
\textcolor[rgb]{1,0,0}{t= -11.5}\qquad (x^3-4x^2+2x-5)*(x^2+\textcolor[rgb]{1,0,0}{(-11.5)}x-7) = x^5 - 15.5x^4+41x^3+43.5x+35
$
}}$$

There is no more $$x^2$$

heureka Dec 4, 2014
 #2
avatar+94558 
0

Nice, heureka......the solution is easy.....figuring out how to get there is the hard part....!!!!!

 

 

 Dec 4, 2014

33 Online Users

avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.