+0  
 
0
258
2
avatar

Find t if the expansion of the product of x^3 - 4x^2 + 2x - 5 and x^2 + tx - 7 has no x^2 term.

Guest Dec 4, 2014

Best Answer 

 #1
avatar+18835 
+10

Find t if the expansion of the product of x^3 - 4x^2 + 2x - 5 and x^2 + tx - 7 has no x^2 term.

$$\small{\text{
$
(x^3 - 4x^2 + 2x - 5)*( x^2 + tx - 7) = tx^4-4tx^3+\textcolor[rgb]{1,0,0}{2tx^2}-5tx+x^5-4x^4-5x^3+\textcolor[rgb]{1,0,0}{23x^2}-14x+35
$
}}$$

$$\\ \small{\text{
Set $
\textcolor[rgb]{1,0,0}{2tx^2}+\textcolor[rgb]{1,0,0}{23x^2} = 0
$
than the product has no $x^2$, t must be a constant!
}}
\\\\
2tx^2 + 23x^2 = 0 \\\\
2tx^2 = - 23x^2 \quad | \quad : 2x^2 \\\\
t= -\frac{23}{2} = - 11.5$$

$$\small{\text{
$
\textcolor[rgb]{1,0,0}{t= -11.5}\qquad (x^3-4x^2+2x-5)*(x^2+\textcolor[rgb]{1,0,0}{(-11.5)}x-7) = x^5 - 15.5x^4+41x^3+43.5x+35
$
}}$$

There is no more $$x^2$$

heureka  Dec 4, 2014
Sort: 

2+0 Answers

 #1
avatar+18835 
+10
Best Answer

Find t if the expansion of the product of x^3 - 4x^2 + 2x - 5 and x^2 + tx - 7 has no x^2 term.

$$\small{\text{
$
(x^3 - 4x^2 + 2x - 5)*( x^2 + tx - 7) = tx^4-4tx^3+\textcolor[rgb]{1,0,0}{2tx^2}-5tx+x^5-4x^4-5x^3+\textcolor[rgb]{1,0,0}{23x^2}-14x+35
$
}}$$

$$\\ \small{\text{
Set $
\textcolor[rgb]{1,0,0}{2tx^2}+\textcolor[rgb]{1,0,0}{23x^2} = 0
$
than the product has no $x^2$, t must be a constant!
}}
\\\\
2tx^2 + 23x^2 = 0 \\\\
2tx^2 = - 23x^2 \quad | \quad : 2x^2 \\\\
t= -\frac{23}{2} = - 11.5$$

$$\small{\text{
$
\textcolor[rgb]{1,0,0}{t= -11.5}\qquad (x^3-4x^2+2x-5)*(x^2+\textcolor[rgb]{1,0,0}{(-11.5)}x-7) = x^5 - 15.5x^4+41x^3+43.5x+35
$
}}$$

There is no more $$x^2$$

heureka  Dec 4, 2014
 #2
avatar+81077 
0

Nice, heureka......the solution is easy.....figuring out how to get there is the hard part....!!!!!

 

 

CPhill  Dec 4, 2014

30 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details