Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1464
2
avatar

Find t if the expansion of the product of x^3 - 4x^2 + 2x - 5 and x^2 + tx - 7 has no x^2 term.

 Dec 4, 2014

Best Answer 

 #1
avatar+26397 
+10

Find t if the expansion of the product of x^3 - 4x^2 + 2x - 5 and x^2 + tx - 7 has no x^2 term.

 (x34x2+2x5)(x2+tx7)=tx44tx3+2tx25tx+x54x45x3+23x214x+35 

 Set 2tx2+23x2=0 than the product has no x2, t must be a constant! 2tx2+23x2=02tx2=23x2|:2x2t=232=11.5

 t=11.5(x34x2+2x5)(x2+(11.5)x7)=x515.5x4+41x3+43.5x+35 

There is no more x2

 Dec 4, 2014
 #1
avatar+26397 
+10
Best Answer

Find t if the expansion of the product of x^3 - 4x^2 + 2x - 5 and x^2 + tx - 7 has no x^2 term.

 (x34x2+2x5)(x2+tx7)=tx44tx3+2tx25tx+x54x45x3+23x214x+35 

 Set 2tx2+23x2=0 than the product has no x2, t must be a constant! 2tx2+23x2=02tx2=23x2|:2x2t=232=11.5

 t=11.5(x34x2+2x5)(x2+(11.5)x7)=x515.5x4+41x3+43.5x+35 

There is no more x2

heureka Dec 4, 2014
 #2
avatar+130477 
0

Nice, heureka......the solution is easy.....figuring out how to get there is the hard part....!!!!!

 

 

 Dec 4, 2014

2 Online Users

avatar
avatar