+0  
 
+5
1792
3
avatar+1314 

Find one pair of real numbers, (x,y), such that x + y = 6 and x^3 + y^3 = 144.

 Sep 27, 2015

Best Answer 

 #2
avatar
+4

Find one pair of real numbers, (x,y), such that x + y = 6 and x^3 + y^3 = 144.

 

x=5.2361....  and y=.7639.....

 Sep 27, 2015
 #1
avatar+129852 
+6

x + y = 6 and x^3 + y^3 = 144

 

Notice that   y = 6 - x   and subtituting this into the second equation, we have

 

x^3  + [6 - x]^3 = 144  simpify

 

x^3  -x^3+18 x^2-108 x+216  = 144

 

18x^2 - 108x + 216 = 144  subtract 144 from each side

 

18x^2 - 108x +72  = 0    divide through by 18

 

x^2 - 6x + 4 = 0    and using the Quadratic Formula, the solutions for this are...x =3 +sqrt(5) and x = 3 - sqrt(5)

 

So..if we choose that x = 3 + sqrt(5), then y =  6  - [3 + sqrt(5)] = 3 - sqrt(5) 

 

 

cool cool cool

 Sep 27, 2015
 #2
avatar
+4
Best Answer

Find one pair of real numbers, (x,y), such that x + y = 6 and x^3 + y^3 = 144.

 

x=5.2361....  and y=.7639.....

Guest Sep 27, 2015
 #3
avatar+12530 
+4

Hallo guest!

laughlaughlaugh

 Sep 27, 2015

0 Online Users