Find p for so that the following straight line has (0,50)
2x–(3p+4)y+5p+9 = 0
2x–(3p+4)y+5p+9 = 0 simplify
2x - 3py - 4y + 5p + 9 = 0 .... and we want x =0 and y = 50...so we have
2(0) - 3p(50) - 4(50) + 5p + 9 = 0
0 - 150p - 200 + 5p + 9 = 0
-145p - 191 = 0 add 191 to both sides
-145p = 191 divide both sides by -145
p = -191/ 145
Proof :
2x - (3 (-191/145) + 4)y + 5(-191/145) + 9 = 0
2x - [7/145 ] y - 955/145 + 9 = 0
2x - [7/145]y - 955/145 + 9 = 0 and when x = 0 and y = 50, we have
2(0) - [7/145] (50) - 955/145 + 9 = 0
-[7 /145] (50) + 70/29 =0
-7(50) /145 + 70/29 =0
-7 (10)/29 + 70/29
-70/29 + 70/29 = 0