We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Find polynomial f(n) such that for all integers n >= we have

0
382
2

Find polynomial f(n) such that for all integers n >= we have

$$3\left( 1\cdot2 + 2\cdot3 + \ldots + n(n+1) \right) = f(n).$$

Write f(n) as a polynomial with terms in descending order of n

Feb 14, 2018

### 2+0 Answers

#1
+1

We have  the first few terms as

2      8      20     40     70

6     12      20     30

6       8       10

2       2

The Sum of Differences  produces 3 non-zero rows...so we will have a  cubic polynomial  representing the sum inside the parentheses

So we have that

a  +  b +  c   +  d   =  2

8a + 4b + 2c + d  =  8

27a + 9b + 3c + d  =  20

64a + 16b + 4c + d  =  40

Solving this system produces    a  = 1/3   b  =  1   c  = 2/3    d  = 0

So...the polynomial generating  the sums inside the parentheses  is just

(1/3)n^3 +  n^2  +  (2/3)n

So  3 times this is just

f (n)  =  n^3  + n^2  + 2n   Feb 14, 2018
edited by CPhill  Feb 14, 2018
#2
+1

Find polynomial f(n) such that for all integers $$n \ge 1$$ we have
$$3\left( 1\cdot2 + 2\cdot3 + \ldots + n(n+1) \right) = f(n).$$

$$\begin{array}{|rcll|} \hline f(n) &=& 3\Big( 1\cdot2 + 2\cdot3 + 3\cdot4 + \ldots + n(n+1) \Big) \quad & | \quad n(n+1) = n^2+n \\ &=& 3 ( 1^2+1+2^2+2+3^2+3 + \ldots + n^2+n ) \\ &=& 3 ( \underbrace{1+2+3+ \ldots + n}_{=\dfrac{(n+1)n}{2}} + \underbrace{1^2 +2^2 +3^2 + \ldots + n^2}_{=\dfrac{(n+1)n(2n+1)}{6}} ) \\\\ &=& 3 \left( \dfrac{(n+1)n}{2} + \dfrac{(n+1)n(2n+1)}{6} \right) \\\\ &=& 3 \left[ \dfrac{(n+1)n}{2}\left(1+ \dfrac{2n+1}{3}\right) \right] \\\\ &=& \dfrac{(n+1)n}{2}\left(3+ 2n+1\right) \\\\ &=& \dfrac{(n+1)n}{2}\left(2n+4\right) \\\\ &=& (n+1)n(n+2) \\\\ &=& n(n+1)(n+2) \\\\ &\mathbf{=}& \mathbf{ n^3+3n^2+2n } \\\\ \hline \end{array}$$ Feb 14, 2018