Find polynomial f(n) such that for all integers n >= we have
\(3\left( 1\cdot2 + 2\cdot3 + \ldots + n(n+1) \right) = f(n).\)
Write f(n) as a polynomial with terms in descending order of n
We have the first few terms as
2 8 20 40 70
6 12 20 30
6 8 10
2 2
The Sum of Differences produces 3 non-zero rows...so we will have a cubic polynomial representing the sum inside the parentheses
So we have that
a + b + c + d = 2
8a + 4b + 2c + d = 8
27a + 9b + 3c + d = 20
64a + 16b + 4c + d = 40
Solving this system produces a = 1/3 b = 1 c = 2/3 d = 0
So...the polynomial generating the sums inside the parentheses is just
(1/3)n^3 + n^2 + (2/3)n
So 3 times this is just
f (n) = n^3 + n^2 + 2n
Find polynomial f(n) such that for all integers \( n \ge 1\) we have
\(3\left( 1\cdot2 + 2\cdot3 + \ldots + n(n+1) \right) = f(n).\)
\(\begin{array}{|rcll|} \hline f(n) &=& 3\Big( 1\cdot2 + 2\cdot3 + 3\cdot4 + \ldots + n(n+1) \Big) \quad & | \quad n(n+1) = n^2+n \\ &=& 3 ( 1^2+1+2^2+2+3^2+3 + \ldots + n^2+n ) \\ &=& 3 ( \underbrace{1+2+3+ \ldots + n}_{=\dfrac{(n+1)n}{2}} + \underbrace{1^2 +2^2 +3^2 + \ldots + n^2}_{=\dfrac{(n+1)n(2n+1)}{6}} ) \\\\ &=& 3 \left( \dfrac{(n+1)n}{2} + \dfrac{(n+1)n(2n+1)}{6} \right) \\\\ &=& 3 \left[ \dfrac{(n+1)n}{2}\left(1+ \dfrac{2n+1}{3}\right) \right] \\\\ &=& \dfrac{(n+1)n}{2}\left(3+ 2n+1\right) \\\\ &=& \dfrac{(n+1)n}{2}\left(2n+4\right) \\\\ &=& (n+1)n(n+2) \\\\ &=& n(n+1)(n+2) \\\\ &\mathbf{=}& \mathbf{ n^3+3n^2+2n } \\\\ \hline \end{array}\)