+0  
 
0
668
1
avatar+97 

Differentiated Equation:

dA/dr=(2*(pi^2*r^6-64800)/(r^2sqrt(pi^2*r^6+129600)))

 

Let dA/dr=0

Therefore: 0=(2*(pi^2*r^6-64800)/(r^2sqrt(pi^2*r^6+129600)))

Find 'r', with working, please :)?

 

NOTE: In the original question, the 'r' value will represent the radius in the volume formula of a cone. Resulting in finding 'h' value of the formula.

Known infomation of the volume formula:

V=120ml 

so, 120=1/3 pi*r^2*h

Thanks again, ask any questions if it is not clear. 

 Aug 13, 2014

Best Answer 

 #1
avatar+33652 
+5

For your expression to be zero you must have the term in brackets in the numerator to be zero; so:

pi2*r6 - 64800 = 0 or r = 648001/6/pi1/3

$${\mathtt{r}} = {\frac{{{\mathtt{64\,800}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{6}}}}\right)}}{{{\mathtt{\pi}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}}} \Rightarrow {\mathtt{r}} = {\mathtt{4.327\: \!255\: \!548\: \!039\: \!541\: \!4}}$$

 Aug 13, 2014
 #1
avatar+33652 
+5
Best Answer

For your expression to be zero you must have the term in brackets in the numerator to be zero; so:

pi2*r6 - 64800 = 0 or r = 648001/6/pi1/3

$${\mathtt{r}} = {\frac{{{\mathtt{64\,800}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{6}}}}\right)}}{{{\mathtt{\pi}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}}} \Rightarrow {\mathtt{r}} = {\mathtt{4.327\: \!255\: \!548\: \!039\: \!541\: \!4}}$$

Alan Aug 13, 2014

1 Online Users

avatar