Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1
15432
3
avatar

Find sin 2x, cos 2x, and tan 2x from the given information. tan x = −1/2 , cos x > 0

 Nov 17, 2015

Best Answer 

 #2
avatar+26397 
+10

Find sin 2x, cos 2x, and tan 2x from the given information. tan x = −1/2 , cos x > 0

 

 

In trigonometry, the tangent half-angle formulas relate the tangent of one half of an angle to trigonometric functions of the entire angle. They are as follows:

 sin(α)=2tanα21+tan2α2cos(α)=1tan2α21+tan2α2tan(α)=2tanα21tan2α2  or  sin(2α)=2tanα1+tan2αcos(2α)=1tan2α1+tan2αtan(2α)=2tanα1tan2α 

 

sin(2x)=2tanx1+tan2xsin(2x)=2(12)1+(12)2sin(2x)=11+14sin(2x)=45cos(2x)=1tan2x1+tan2xcos(2x)=1141+14cos(2x)=3445cos(2x)=35tan(2x)=2tanx1tan2xtan(2x)=2(12)1(12)2tan(2x)=1114tan(2x)=43

 

laugh

 Nov 17, 2015
 #1
avatar+118703 
+5

Find sin 2x, cos 2x, and tan 2x from the given information. tan x = −1/2 , cos x > 0

 

If a right angles triangle has the two short sides of 1 and 2 then the hypotenuse must be sqrt5

since tan is neg the angle is in the 2nd or 4th quads and since cos is pos, x must be in the 4th quad.

 

tan x = −1/2        cosx= +2/sqrt5         sinx= -1/sqrt5

 

sin2x= 2sinxcosx = 2* -1/sqrt5 * 2/sqrt5 = -4/5

 

cos2x= cos^2x-sin^2x =  4/5-1/5 = 3/5

 

I did it in my head so I hope I didn't do anything stupid.  You are capable of checking yourself. 

Any question, just ask. :)

 Nov 17, 2015
 #2
avatar+26397 
+10
Best Answer

Find sin 2x, cos 2x, and tan 2x from the given information. tan x = −1/2 , cos x > 0

 

 

In trigonometry, the tangent half-angle formulas relate the tangent of one half of an angle to trigonometric functions of the entire angle. They are as follows:

 sin(α)=2tanα21+tan2α2cos(α)=1tan2α21+tan2α2tan(α)=2tanα21tan2α2  or  sin(2α)=2tanα1+tan2αcos(2α)=1tan2α1+tan2αtan(2α)=2tanα1tan2α 

 

sin(2x)=2tanx1+tan2xsin(2x)=2(12)1+(12)2sin(2x)=11+14sin(2x)=45cos(2x)=1tan2x1+tan2xcos(2x)=1141+14cos(2x)=3445cos(2x)=35tan(2x)=2tanx1tan2xtan(2x)=2(12)1(12)2tan(2x)=1114tan(2x)=43

 

laugh

heureka Nov 17, 2015
 #3
avatar+118703 
+5

Thanks Heureka,

I didn't even see the tan(2x)      smiley

 Nov 17, 2015

1 Online Users