From the Pythagorean identity,
sin2 θ + cos2 θ = 1 Plug in -10/11 for cos θ .
sin2 θ + (-10/11)2 = 1 \((-\frac{10}{11})^2=(-\frac{10}{11})(-\frac{10}{11})=\frac{100}{121}\)
sin2 θ + 100/121 = 1 Subtract 100 / 121 from both sides.
sin2 θ = 21/121 Since sin is negative in Quad III, take the negative sqrt of both sides.
sin θ = \(-\sqrt{\frac{21}{121}}\)
sin θ = \(-\frac{\sqrt{21}}{11}\)
From the Pythagorean identity,
sin2 θ + cos2 θ = 1 Plug in -10/11 for cos θ .
sin2 θ + (-10/11)2 = 1 \((-\frac{10}{11})^2=(-\frac{10}{11})(-\frac{10}{11})=\frac{100}{121}\)
sin2 θ + 100/121 = 1 Subtract 100 / 121 from both sides.
sin2 θ = 21/121 Since sin is negative in Quad III, take the negative sqrt of both sides.
sin θ = \(-\sqrt{\frac{21}{121}}\)
sin θ = \(-\frac{\sqrt{21}}{11}\)