Triangle ABC has summits: A(-5 , 1) , B(-6 , -4) and C (3,2)
By finding the height from summit A, find the area of the triangle.
Area = ( base x height ) / 2
Edge lengths | (sqrt(26) | 3 sqrt(13) | sqrt(65))≈(5.09902 | 10.8167 | 8.06226) circumradius
sqrt(65/2)≈5.70088 inradius | sqrt((39 (-1 + 2 sqrt(2) + sqrt(5) - sqrt(10)))/(2 (3 +
sqrt(2) + sqrt(5))))≈1.6265 area | 39/2 = 19.5 perimeter | sqrt(13) (3 + sqrt(2) +
sqrt(5))≈23.9779 interior angles | ((180 cos^(-1)(2/sqrt(5)))/π° | (180 cos^(-1)
(-1/sqrt(10)))/π° | 45°)≈(0.463648 radians | 1.89255 radians | 0.785398 radians) interior
angle sum | 180° = π rad≈3.142 rad exterior angle sum | 900° = 5 π rad≈15.71 rad
Sorry I should've mentionned I'm searching for a solution using a graph and linear equations.
Sorry I should've mentionned I'm searching for a solution using a graph and linear equations.