Find the area enclosed by the graph of the parametric equationsx=6costsint,y=6cos2t.
Find the area enclosed by the graph of the parametric equations
x=6costsint,y=6cos2t.
Second attempt:x=6cos(t)sin(t)y=6cos2(t)x2+y2=(6cos(t)sin(t))2+(6cos2(t))2x2+y2=62cos2(t)sin2(t)+62cos2(t)cos2(t)x2+y2=62cos2(t)(sin2(t)+cos2(t)⏟=1)x2+y2=62cos2(t)x2+y2=6⋅6cos2(t)|y=6cos2(t)x2+y2=6yy2−6y+x2=0(y−3)2−9+x2=0(y−3)2+x2=9(y−3)2+(x+0)2=32This is a circle with center (0,3) and radius = 3 The area enclosed is πr2=π⋅32=9π
Find the area enclosed by the graph of the parametric equations
x=6costsint,y=6cos2t.
Formula 1:2cos(t)sin(t)=sin(2t)|⋅36cos(t)sin(t)=3sin(2t)
Formula 2:2cos2(t)=1+cos(2t)|⋅36cos2(t)=3+3cos(2t)
Substitute:x=6cos(t)sin(t)|6cos(t)sin(t)=3sin(2t)=3sin(2t)=0+3sin(2t)y=6cos2(t)|6cos2(t)=3+3cos(2t)=3+3cos(2t)x=0+3sin(2t)y=3+3cos(2t)This is a circle with center (0,3) and radius = 3 The area enclosed is πr2=π⋅32=9π
Find the area enclosed by the graph of the parametric equations
x=6costsint,y=6cos2t.
Second attempt:x=6cos(t)sin(t)y=6cos2(t)x2+y2=(6cos(t)sin(t))2+(6cos2(t))2x2+y2=62cos2(t)sin2(t)+62cos2(t)cos2(t)x2+y2=62cos2(t)(sin2(t)+cos2(t)⏟=1)x2+y2=62cos2(t)x2+y2=6⋅6cos2(t)|y=6cos2(t)x2+y2=6yy2−6y+x2=0(y−3)2−9+x2=0(y−3)2+x2=9(y−3)2+(x+0)2=32This is a circle with center (0,3) and radius = 3 The area enclosed is πr2=π⋅32=9π