Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2405
3
avatar+490 

Find the area enclosed by the graph of the parametric equationsx=6costsint,y=6cos2t.
 

 Nov 28, 2018

Best Answer 

 #2
avatar+26397 
+9

Find the area enclosed by the graph of the parametric equations
x=6costsint,y=6cos2t.

 

Second attempt:x=6cos(t)sin(t)y=6cos2(t)x2+y2=(6cos(t)sin(t))2+(6cos2(t))2x2+y2=62cos2(t)sin2(t)+62cos2(t)cos2(t)x2+y2=62cos2(t)(sin2(t)+cos2(t)=1)x2+y2=62cos2(t)x2+y2=66cos2(t)|y=6cos2(t)x2+y2=6yy26y+x2=0(y3)29+x2=0(y3)2+x2=9(y3)2+(x+0)2=32This is a circle with center (0,3) and radius = 3 The area enclosed is πr2=π32=9π 

 

laugh

 Nov 28, 2018
 #1
avatar+26397 
+10

Find the area enclosed by the graph of the parametric equations

x=6costsint,y=6cos2t.

 

Formula 1:2cos(t)sin(t)=sin(2t)|36cos(t)sin(t)=3sin(2t)

 

Formula 2:2cos2(t)=1+cos(2t)|36cos2(t)=3+3cos(2t)

 

Substitute:x=6cos(t)sin(t)|6cos(t)sin(t)=3sin(2t)=3sin(2t)=0+3sin(2t)y=6cos2(t)|6cos2(t)=3+3cos(2t)=3+3cos(2t)x=0+3sin(2t)y=3+3cos(2t)This is a circle with center (0,3) and radius = 3 The area enclosed is πr2=π32=9π 

 

 

laugh

 Nov 28, 2018
edited by heureka  Nov 28, 2018
 #2
avatar+26397 
+9
Best Answer

Find the area enclosed by the graph of the parametric equations
x=6costsint,y=6cos2t.

 

Second attempt:x=6cos(t)sin(t)y=6cos2(t)x2+y2=(6cos(t)sin(t))2+(6cos2(t))2x2+y2=62cos2(t)sin2(t)+62cos2(t)cos2(t)x2+y2=62cos2(t)(sin2(t)+cos2(t)=1)x2+y2=62cos2(t)x2+y2=66cos2(t)|y=6cos2(t)x2+y2=6yy26y+x2=0(y3)29+x2=0(y3)2+x2=9(y3)2+(x+0)2=32This is a circle with center (0,3) and radius = 3 The area enclosed is πr2=π32=9π 

 

laugh

heureka Nov 28, 2018
 #3
avatar+130477 
0

Thanks, heureka

 

Your second way is more elegant.....it translates easily into a circular function...

 

cool cool cool

CPhill  Nov 28, 2018

1 Online Users