+0  
 
0
122
5
avatar+62 

Find the area of a parallelogram with sides of length 6 and 8, and with an interior angle with measure 45 degrees. (No trigonometry please!!!)

bbelt711  Aug 16, 2017
edited by Guest  Aug 16, 2017
Sort: 

5+0 Answers

 #1
avatar+7116 
+1

Find the area of a parallelogram with sides of length 6 and 8, and with an interior angle with measure 45 degrees. (No trigonometry please!!!)

 

Basic line a = 8
Sidelines s = 6
Height \(h=\frac{s}{\sqrt{2}}\)

 

\(A=a\times h=a\times\frac{s}{\sqrt{2}}=8\times\frac{6}{\sqrt{2}}=\frac{48}{\sqrt{2}}\)

\(​A=33.94112549695..\)

laugh  !

asinus  Aug 16, 2017
edited by asinus  Aug 16, 2017
 #2
avatar+90988 
+1

How did you get the height asinus ?    

Melody  Aug 16, 2017
 #4
avatar+7116 
+2

How did you get the height asinus ?   Thank's Melody!

 

parallelogram \(ABCD\)

 \(\overline{AB}=a\\ \overline{BC}=s\\ triangle\ BAD=45°\)

\(perpendicular\ from\ D\ to\ a\ to\ point\ E\ is\ h.\)

\(AED\ is\ an\ isosceles\ right\ triangle.\)  \((\overline {DE}=h)=\overline{AE}\)

 

Set of Pythagoras:

\(\overline {AD}\ ^2=\overline{DE}\ ^2+\overline{AE}\ ^2\)

\(s ^2=2h^2\)

\(h^2=\frac{s^2}{2}\)

\(\large h=\frac{s}{\sqrt{2}}\)

laugh  !

asinus  Aug 16, 2017
 #5
avatar+90988 
+1

Thanks asinus :)

Melody  Aug 16, 2017
 #3
avatar+90988 
+2

 

 

 

 

\(h^2+h^2=6^2\\ 2h^2=36\\ h^2=18\\ h=\sqrt{18}\\ h=3\sqrt2\)

 

So

\(area=base \times height\\ A=8\times 3\sqrt2\\ A=24\sqrt2\;\;units^2\\\)

Melody  Aug 16, 2017

6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details