In triangle ABC , AB= AC=5 and BC=7. Let O be the circumcenter of triangle ABC. Find the area of triangle OBC .
a = 7 b = 5 c = 5
The circumradius length is given by:
abc
_________________________________________ =
√[ (a + b + c) ( a + b - c) (a + c - b ) ( b + c - a)]
7* 5 * 5
________________________________________ =
√ [ ( 7 + 5 + 5) ( 7) ( 7) ( 3) ]
175
_____________ =
√[ (17) (49) (3) ]
175
_______________ =
7 √51
25 / √51
Using the Law of Cosines, we can calculate angle BAC
7^2 - 5^2 - 5^2
_____________ = cos BAC
-2(5)(5)
1 / 50 =cos BAC
arccos (1/50) = BAC = 88.85°
And since BAC is an inscribed angle, then central angle BOC is twice this = 177.7°
So the area of BOC = (1/2) ( 25/ √71)^2 sin (177.7) ≈ .177 units^2
In triangle ABC, AB= AC=5 and BC=7. Let O be the circumcenter of triangle ABC. Find the area of triangle OBC.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Let M be a midpoint on AB.
Angle BAO ==> β = arcsin(3.5 / 5) ==> 44.427004º
Area of triangle ABC ==> A1 [sqrt(52 - 3.52) * 3.5 ==> A1 = 12.49749975 u2
Area of polygon ABOC ==> A2 = 2[(tanβ * 2.5) * 2.5] A2 = 12.25245073 u2
Δ OBC area ==> A = A1 - A2 = 0.24504902 u2