+0  
 
0
330
2
avatar

Find the center and radius of the circle whose equation is x^2+3x+y^2-17 = 0. The center of the circle is (___ ,___ ). The radius of the circle is_______

Guest Jun 13, 2015

Best Answer 

 #2
avatar+90968 
+10

$$\begin{array}{rll}
x^2+3x+y^2-17 &=& 0\\\\
x^2+3x+y^2 &=& 17\\\\
x^2+3x+(\frac{3}{2})^2\;\;+y^2 &=& 17+(\frac{3}{2})^2\\\\
(x+\frac{3}{2})^2\;\;+y^2 &=& 17+\frac{9}{4}\\\\
(x+\frac{3}{2})^2\;\;+y^2 &=& \frac{77}{4}\\\\
(x+\frac{3}{2})^2\;\;+y^2 &=& \left(\frac{\sqrt{77}}{2}\right)^2\\\\
\end{array}\\\\
centre\;\;(\frac{-3}{2},\;0)\qquad radius&=& \frac{\sqrt{77}}{2}$$

Melody  Jun 13, 2015
Sort: 

2+0 Answers

 #1
avatar+26322 
+10

Get this in the form (x - xc)2 + (y - yc)2 = r2

 

First look at the x-terms

x2 + 3x can be written as (x + 3/2)2 - 9/4  = (x - -3/2)2 - 9/4  giving xc = -3/2

 

Now look at the y-terms

y2 can be written as (y - 0)2 giving yc = 0

 

(xc, yc) = (-3/2, 0)

 

So the original equation can be written as (x + 3/2)2 - 9/4 + (y - 0)2 - 17 = 0

or (x + 3/2)2 + (y - 0)2 = 17 +9/4

or (x + 3/2)2 + (y - 0)2 = 77/4

 

so r2 = 77/4

r = (√77)/2

.

Alan  Jun 13, 2015
 #2
avatar+90968 
+10
Best Answer

$$\begin{array}{rll}
x^2+3x+y^2-17 &=& 0\\\\
x^2+3x+y^2 &=& 17\\\\
x^2+3x+(\frac{3}{2})^2\;\;+y^2 &=& 17+(\frac{3}{2})^2\\\\
(x+\frac{3}{2})^2\;\;+y^2 &=& 17+\frac{9}{4}\\\\
(x+\frac{3}{2})^2\;\;+y^2 &=& \frac{77}{4}\\\\
(x+\frac{3}{2})^2\;\;+y^2 &=& \left(\frac{\sqrt{77}}{2}\right)^2\\\\
\end{array}\\\\
centre\;\;(\frac{-3}{2},\;0)\qquad radius&=& \frac{\sqrt{77}}{2}$$

Melody  Jun 13, 2015

22 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details