We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Find the coefficient of the term indicated in the square bracke:(1 + 4𝑥)^5 using binomial expansion

0
180
1

Find the coefficient of the term indicated in the square bracke:(1 + 4𝑥)^5 using binomial expansion

please explain your steps

Nov 10, 2018

### 1+0 Answers

#1
0

(4 x + 1)^5

Expand (4 x + 1)^5 using the binomial expansion theorem.
(4 x + 1)^5 = sum_(k=0)^5 binomial(5, k) (4 x)^(5 - k) 1^k = binomial(5, 0) (4 x)^5 1^0 + binomial(5, 1) (4 x)^4 1^1 + binomial(5, 2) (4 x)^3 1^2 + binomial(5, 3) (4 x)^2 1^3 + binomial(5, 4) (4 x)^1 1^4 + binomial(5, 5) (4 x)^0 1^5:
1024 binomial(5, 0) x^5 + 256 binomial(5, 1) x^4 + 64 binomial(5, 2) x^3 + 16 binomial(5, 3) x^2 + 4 binomial(5, 4) x + binomial(5, 5)

Evaluate the binomial coefficients by looking at Pascal's triangle.
The binomial coeffients comprise the 6^th row of Pascal's triangle:
1 | | 5 | | 10 | | 10 | | 5 | | 1
(4 x)^5 + 5 (4 x)^4 + 10 (4 x)^3 + 10 (4 x)^2 + 5 4 x + 1

Distribute exponents over products in (4 x)^2.
Multiply each exponent in 4 x by 2:
(4 x)^5 + 5 (4 x)^4 + 10 (4 x)^3 + 10 4^2 x^2 + 4 5 x + 1

Evaluate 4^2.
4^2 = 16:
(4 x)^5 + 5 (4 x)^4 + 10 (4 x)^3 + 16 10 x^2 + 4 5 x + 1

Distribute exponents over products in (4 x)^3.
Multiply each exponent in 4 x by 3:
(4 x)^5 + 5 (4 x)^4 + 10 4^3 x^3 + 16 10 x^2 + 4 5 x + 1

In order to evaluate 4^3 express 4^3 as 4×4^2.
4^3 = 4×4^2:
(4 x)^5 + 5 (4 x)^4 + 4×4^2 10 x^3 + 16 10 x^2 + 4 5 x + 1

Evaluate 4^2.
4^2 = 16:
(4 x)^5 + 5 (4 x)^4 + 16 4 10 x^3 + 16 10 x^2 + 4 5 x + 1

Multiply 4 and 16 together.
4×16 = 64:
(4 x)^5 + 5 (4 x)^4 + 64 10 x^3 + 16 10 x^2 + 4 5 x + 1

Distribute exponents over products in (4 x)^4.
Multiply each exponent in 4 x by 4:
(4 x)^5 + 5 4^4 x^4 + 64 10 x^3 + 16 10 x^2 + 4 5 x + 1

Compute 4^4 by repeated squaring.
4^4 = (4^2)^2:
(4 x)^5 + (4^2)^2 5 x^4 + 64 10 x^3 + 16 10 x^2 + 4 5 x + 1

Evaluate 4^2.
4^2 = 16:
(4 x)^5 + 16^2 5 x^4 + 64 10 x^3 + 16 10 x^2 + 4 5 x + 1

(4 x)^5 + 256 5 x^4 + 64 10 x^3 + 16 10 x^2 + 4 5 x + 1

Multiply 4 and 5 together.
4×5 = 20:
(4 x)^5 + 256 5 x^4 + 64 10 x^3 + 16 10 x^2 + 20 x + 1

Multiply 16 and 10 together.
16×10 = 160:
(4 x)^5 + 256 5 x^4 + 64 10 x^3 + 160 x^2 + 20 x + 1

Multiply 64 and 10 together.
64×10 = 640:
(4 x)^5 + 256 5 x^4 + 640 x^3 + 160 x^2 + 20 x + 1

Multiply 256 and 5 together.
256×5 = 1280:
(4 x)^5 + 1280 x^4 + 640 x^3 + 160 x^2 + 20 x + 1

Distribute exponents over products in (4 x)^5.
Multiply each exponent in 4 x by 5:
4^5 x^5 + 1280 x^4 + 640 x^3 + 160 x^2 + 20 x + 1

Compute 4^5 by repeated squaring. For example a^7 = a a^6 = a (a^3)^2 = a (a a^2)^2.
4^5 = 4×4^4 = 4 (4^2)^2:
4 (4^2)^2 x^5 + 1280 x^4 + 640 x^3 + 160 x^2 + 20 x + 1

Evaluate 4^2.
4^2 = 16:
4 16^2 x^5 + 1280 x^4 + 640 x^3 + 160 x^2 + 20 x + 1

256 4 x^5 + 1280 x^4 + 640 x^3 + 160 x^2 + 20 x + 1

Multiply 4 and 256 together.
4×256 = 1024:

1024x^5 + 1280x^4 + 640x^3 + 160x^2 + 20x + 1

Nov 10, 2018