+0  
 
0
700
2
avatar+88 

Please answer

zandaleebailey  Apr 14, 2015

Best Answer 

 #2
avatar+93656 
+5

Thanks Heureka,

you don't really need to do all that.

 

$$\\(2x+1)^{12}=\displaystyle\sum_{r=0}^{12}\;^{12}C_r(2x)^r(1)^{12-r}=\displaystyle\sum_{r=0}^{12}\;^{12}C_r(2x)^r\\\\
$The only term with x^6\; is $\\\\
^{12}C_6(2x)^6=^{12}C_6*2^6x^6\\\\
$So the coefficient of $x^6\;\;is \;\;\;^{12}C_6*2^6=^{12}C_6*64$$

 

$${\left({\frac{{\mathtt{12}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{12}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)}{\mathtt{\,\times\,}}{\mathtt{64}} = {\mathtt{59\,136}}$$

Melody  Apr 15, 2015
 #1
avatar+20025 
+5

Find the coefficient of x^6 in the expansion of (2x+1)^12 

$$\\\small{\text{$(2x+1)^{12} $}}\\\\
\small{\text{
$
= \binom{12}{0}\cdot(2x)^{12}\cdot 1^0
+ \binom{12}{1}\cdot(2x)^{11}\cdot 1^1
+ \binom{12}{2}\cdot(2x)^{10}\cdot 1^2
+ \binom{12}{3}\cdot(2x)^{9}\cdot 1^3
+ \binom{12}{4}\cdot(2x)^{8}\cdot 1^4+
$}}\\\\
\small{\text{
$
+ \binom{12}{5}\cdot(2x)^{7}\cdot 1^5
+ \textcolor[rgb]{1,0,0}{
\binom{12}{6}\cdot(2x)^{6}\cdot 1^6
}
+ \binom{12}{7}\cdot(2x)^{5}\cdot 1^7
+ \binom{12}{8}\cdot(2x)^{4}\cdot 1^8+
$}}\\\\
\small{\text{
$
+ \binom{12}{9}\cdot(2x)^{3}\cdot 1^9
+ \binom{12}{10}\cdot(2x)^{2}\cdot 1^{10}
+ \binom{12}{11}\cdot(2x)^{1}\cdot 1^{11}
+ \binom{12}{12}\cdot(2x)^{0}\cdot 1^{12}
$}}$$

 

Coefficient of $$\small{\text{$x^6$}}$$ :

$$\small{\text{
$
\begin{array}{rl}
&\textcolor[rgb]{1,0,0}{\binom{12}{6}\cdot(2x)^{6}\cdot 1^6} \\\\
=&\binom{12}{6}\cdot(2x)^{6}\\\\
=&\binom{12}{6}\cdot2^6\cdot x^6\\\\
=&\binom{12}{6}\cdot 64 \cdot x^6\\\\
=&924\cdot 64 \cdot x^6\\\\
=&59136\cdot x^6\\\\
\end{array}
$
}}$$

 

The coefficient of $$\small{\text{$x^6$}}$$ is 59136

heureka  Apr 15, 2015
 #2
avatar+93656 
+5
Best Answer

Thanks Heureka,

you don't really need to do all that.

 

$$\\(2x+1)^{12}=\displaystyle\sum_{r=0}^{12}\;^{12}C_r(2x)^r(1)^{12-r}=\displaystyle\sum_{r=0}^{12}\;^{12}C_r(2x)^r\\\\
$The only term with x^6\; is $\\\\
^{12}C_6(2x)^6=^{12}C_6*2^6x^6\\\\
$So the coefficient of $x^6\;\;is \;\;\;^{12}C_6*2^6=^{12}C_6*64$$

 

$${\left({\frac{{\mathtt{12}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{12}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)}{\mathtt{\,\times\,}}{\mathtt{64}} = {\mathtt{59\,136}}$$

Melody  Apr 15, 2015

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.