We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
885
2
avatar+88 

Please answer

 Apr 14, 2015

Best Answer 

 #2
avatar+101733 
+5

Thanks Heureka,

you don't really need to do all that.

 

$$\\(2x+1)^{12}=\displaystyle\sum_{r=0}^{12}\;^{12}C_r(2x)^r(1)^{12-r}=\displaystyle\sum_{r=0}^{12}\;^{12}C_r(2x)^r\\\\
$The only term with x^6\; is $\\\\
^{12}C_6(2x)^6=^{12}C_6*2^6x^6\\\\
$So the coefficient of $x^6\;\;is \;\;\;^{12}C_6*2^6=^{12}C_6*64$$

 

$${\left({\frac{{\mathtt{12}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{12}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)}{\mathtt{\,\times\,}}{\mathtt{64}} = {\mathtt{59\,136}}$$

.
 Apr 15, 2015
 #1
avatar+22273 
+5

Find the coefficient of x^6 in the expansion of (2x+1)^12 

$$\\\small{\text{$(2x+1)^{12} $}}\\\\
\small{\text{
$
= \binom{12}{0}\cdot(2x)^{12}\cdot 1^0
+ \binom{12}{1}\cdot(2x)^{11}\cdot 1^1
+ \binom{12}{2}\cdot(2x)^{10}\cdot 1^2
+ \binom{12}{3}\cdot(2x)^{9}\cdot 1^3
+ \binom{12}{4}\cdot(2x)^{8}\cdot 1^4+
$}}\\\\
\small{\text{
$
+ \binom{12}{5}\cdot(2x)^{7}\cdot 1^5
+ \textcolor[rgb]{1,0,0}{
\binom{12}{6}\cdot(2x)^{6}\cdot 1^6
}
+ \binom{12}{7}\cdot(2x)^{5}\cdot 1^7
+ \binom{12}{8}\cdot(2x)^{4}\cdot 1^8+
$}}\\\\
\small{\text{
$
+ \binom{12}{9}\cdot(2x)^{3}\cdot 1^9
+ \binom{12}{10}\cdot(2x)^{2}\cdot 1^{10}
+ \binom{12}{11}\cdot(2x)^{1}\cdot 1^{11}
+ \binom{12}{12}\cdot(2x)^{0}\cdot 1^{12}
$}}$$

 

Coefficient of $$\small{\text{$x^6$}}$$ :

$$\small{\text{
$
\begin{array}{rl}
&\textcolor[rgb]{1,0,0}{\binom{12}{6}\cdot(2x)^{6}\cdot 1^6} \\\\
=&\binom{12}{6}\cdot(2x)^{6}\\\\
=&\binom{12}{6}\cdot2^6\cdot x^6\\\\
=&\binom{12}{6}\cdot 64 \cdot x^6\\\\
=&924\cdot 64 \cdot x^6\\\\
=&59136\cdot x^6\\\\
\end{array}
$
}}$$

 

The coefficient of $$\small{\text{$x^6$}}$$ is 59136

 Apr 15, 2015
 #2
avatar+101733 
+5
Best Answer

Thanks Heureka,

you don't really need to do all that.

 

$$\\(2x+1)^{12}=\displaystyle\sum_{r=0}^{12}\;^{12}C_r(2x)^r(1)^{12-r}=\displaystyle\sum_{r=0}^{12}\;^{12}C_r(2x)^r\\\\
$The only term with x^6\; is $\\\\
^{12}C_6(2x)^6=^{12}C_6*2^6x^6\\\\
$So the coefficient of $x^6\;\;is \;\;\;^{12}C_6*2^6=^{12}C_6*64$$

 

$${\left({\frac{{\mathtt{12}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{12}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)}{\mathtt{\,\times\,}}{\mathtt{64}} = {\mathtt{59\,136}}$$

Melody Apr 15, 2015

21 Online Users

avatar