Find the complex number \(z\) that satisfies \((1 + i) z - 2 \overline{z} = -11 + 25i. \)
(1 + i) z - 2z(conjugate) = -11 + 25i
(1 + i) (a + bi) - 2(a - bi) = -11 + 25i
a + ai + bi + bi^2 - 2a + 2bi = -11 + 25i
-a +3bi + ai - b = -11 + 25i
-(a + b) + (a + 3b)i = -11 + 25i
Equate real and complex parts and we have this system
- (a + b) = - 11 ⇒ a + b = 11 ⇒ b = 11 - a (1)
a + 3b = 25 (2)
Sub (1) into (2) and we have that
a + 3(11 - a) = 25
a + 33 - 3a = 25
-2a = - 8
a = 4
And using (1) b = 11 - a = 11 - 4 = 7
So.....the complex number z is
4 + 7i