$$\\\left(z-\frac{2}{\sqrt{z}}\right)^9\\\\
$The general term is$\\\\
(9Cr)(z)^{(9-r)}\left(\frac{-2}{\sqrt{z}\right)^r}\\\\
=(9Cr)\left(\dfrac{z^9}{z^r}\right)\left(\dfrac{(-2)^r}{(\sqrt{z})^r\right)}\\\\
=(9Cr)\left(\dfrac{z^9*(-2)^r}{z^r*(\sqrt{z})^r\right)}\right)\\\\
=(9Cr)\left(\dfrac{z^{18/2}*(-2)^r}{z^{(2r/2)}*(z)^{(r/2)}\right)}\right)\\\\
=(9Cr)\left(\dfrac{z^{((18-2r-r)/2)}*(-2)^r}{1}\right)\\\\
=(9Cr)(z^{((18-3r)/2)}*(-2)^r)\\\\$$
$$\\$The constant term will be when $\\\\
(18-3r)/2=0\\
18-3r=0\\
r=6\\
S$so the constant term is $\\
=(9C6)*(-2)^6)\\
=64*9C6\\\\$$
$${\mathtt{64}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{9}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{9}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)} = {\mathtt{5\,376}}$$
You had better check that answer Mellie
We'll let WolframAlpha do the heavy lifting, here....
Looks like the constant term is 5376....
We could have actually determined this through the binomial expansion
The term would be C(9,6)z^3 [-2*z^(-1/2)]^6 = C(9,6)[-2]^6 = 5376 .....note that the z's "cancel"
$$\\\left(z-\frac{2}{\sqrt{z}}\right)^9\\\\
$The general term is$\\\\
(9Cr)(z)^{(9-r)}\left(\frac{-2}{\sqrt{z}\right)^r}\\\\
=(9Cr)\left(\dfrac{z^9}{z^r}\right)\left(\dfrac{(-2)^r}{(\sqrt{z})^r\right)}\\\\
=(9Cr)\left(\dfrac{z^9*(-2)^r}{z^r*(\sqrt{z})^r\right)}\right)\\\\
=(9Cr)\left(\dfrac{z^{18/2}*(-2)^r}{z^{(2r/2)}*(z)^{(r/2)}\right)}\right)\\\\
=(9Cr)\left(\dfrac{z^{((18-2r-r)/2)}*(-2)^r}{1}\right)\\\\
=(9Cr)(z^{((18-3r)/2)}*(-2)^r)\\\\$$
$$\\$The constant term will be when $\\\\
(18-3r)/2=0\\
18-3r=0\\
r=6\\
S$so the constant term is $\\
=(9C6)*(-2)^6)\\
=64*9C6\\\\$$
$${\mathtt{64}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{9}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{9}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)} = {\mathtt{5\,376}}$$
You had better check that answer Mellie