\\\left(z-\frac{2}{\sqrt{z}}\right)^9\\\\ $The general term is$\\\\ (9Cr)(z)^{(9-r)}\left(\frac{-2}{\sqrt{z}\right)^r}\\\\ =(9Cr)\left(\dfrac{z^9}{z^r}\right)\left(\dfrac{(-2)^r}{(\sqrt{z})^r\right)}\\\\ =(9Cr)\left(\dfrac{z^9*(-2)^r}{z^r*(\sqrt{z})^r\right)}\right)\\\\ =(9Cr)\left(\dfrac{z^{18/2}*(-2)^r}{z^{(2r/2)}*(z)^{(r/2)}\right)}\right)\\\\ =(9Cr)\left(\dfrac{z^{((18-2r-r)/2)}*(-2)^r}{1}\right)\\\\ =(9Cr)(z^{((18-3r)/2)}*(-2)^r)\\\\
$Theconstanttermwillbewhen$(18−3r)/2=018−3r=0r=6S$sotheconstanttermis$=(9C6)∗(−2)6)=64∗9C6
64×(9!6!×(9−6)!)=5376
You had better check that answer Mellie
We'll let WolframAlpha do the heavy lifting, here....
Looks like the constant term is 5376....
We could have actually determined this through the binomial expansion
The term would be C(9,6)z^3 [-2*z^(-1/2)]^6 = C(9,6)[-2]^6 = 5376 .....note that the z's "cancel"
\\\left(z-\frac{2}{\sqrt{z}}\right)^9\\\\ $The general term is$\\\\ (9Cr)(z)^{(9-r)}\left(\frac{-2}{\sqrt{z}\right)^r}\\\\ =(9Cr)\left(\dfrac{z^9}{z^r}\right)\left(\dfrac{(-2)^r}{(\sqrt{z})^r\right)}\\\\ =(9Cr)\left(\dfrac{z^9*(-2)^r}{z^r*(\sqrt{z})^r\right)}\right)\\\\ =(9Cr)\left(\dfrac{z^{18/2}*(-2)^r}{z^{(2r/2)}*(z)^{(r/2)}\right)}\right)\\\\ =(9Cr)\left(\dfrac{z^{((18-2r-r)/2)}*(-2)^r}{1}\right)\\\\ =(9Cr)(z^{((18-3r)/2)}*(-2)^r)\\\\
$Theconstanttermwillbewhen$(18−3r)/2=018−3r=0r=6S$sotheconstanttermis$=(9C6)∗(−2)6)=64∗9C6
64×(9!6!×(9−6)!)=5376
You had better check that answer Mellie