+0  
 
0
756
3
avatar+1760 

Find the constant term in the expansion of
\[\Big(z - \frac{2}{\sqrt{z}}\Big)^9.\]

Mellie  May 7, 2015

Best Answer 

 #2
avatar+91053 
+10

$$\\\left(z-\frac{2}{\sqrt{z}}\right)^9\\\\
$The general term is$\\\\
(9Cr)(z)^{(9-r)}\left(\frac{-2}{\sqrt{z}\right)^r}\\\\
=(9Cr)\left(\dfrac{z^9}{z^r}\right)\left(\dfrac{(-2)^r}{(\sqrt{z})^r\right)}\\\\
=(9Cr)\left(\dfrac{z^9*(-2)^r}{z^r*(\sqrt{z})^r\right)}\right)\\\\
=(9Cr)\left(\dfrac{z^{18/2}*(-2)^r}{z^{(2r/2)}*(z)^{(r/2)}\right)}\right)\\\\
=(9Cr)\left(\dfrac{z^{((18-2r-r)/2)}*(-2)^r}{1}\right)\\\\
=(9Cr)(z^{((18-3r)/2)}*(-2)^r)\\\\$$

 

$$\\$The constant term will be when $\\\\
(18-3r)/2=0\\
18-3r=0\\
r=6\\
S$so the constant term is $\\
=(9C6)*(-2)^6)\\
=64*9C6\\\\$$

 

$${\mathtt{64}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{9}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{9}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)} = {\mathtt{5\,376}}$$

 

You had better check that answer Mellie       

Melody  May 7, 2015
Sort: 

3+0 Answers

 #1
avatar+78755 
+10

We'll let WolframAlpha do the heavy lifting, here....

Looks like the constant term is 5376....

We could have actually determined this through the binomial expansion

The term would be  C(9,6)z^3 [-2*z^(-1/2)]^6 = C(9,6)[-2]^6 = 5376 .....note that the z's "cancel"

 

  

CPhill  May 7, 2015
 #2
avatar+91053 
+10
Best Answer

$$\\\left(z-\frac{2}{\sqrt{z}}\right)^9\\\\
$The general term is$\\\\
(9Cr)(z)^{(9-r)}\left(\frac{-2}{\sqrt{z}\right)^r}\\\\
=(9Cr)\left(\dfrac{z^9}{z^r}\right)\left(\dfrac{(-2)^r}{(\sqrt{z})^r\right)}\\\\
=(9Cr)\left(\dfrac{z^9*(-2)^r}{z^r*(\sqrt{z})^r\right)}\right)\\\\
=(9Cr)\left(\dfrac{z^{18/2}*(-2)^r}{z^{(2r/2)}*(z)^{(r/2)}\right)}\right)\\\\
=(9Cr)\left(\dfrac{z^{((18-2r-r)/2)}*(-2)^r}{1}\right)\\\\
=(9Cr)(z^{((18-3r)/2)}*(-2)^r)\\\\$$

 

$$\\$The constant term will be when $\\\\
(18-3r)/2=0\\
18-3r=0\\
r=6\\
S$so the constant term is $\\
=(9C6)*(-2)^6)\\
=64*9C6\\\\$$

 

$${\mathtt{64}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{9}}{!}}{{\mathtt{6}}{!}{\mathtt{\,\times\,}}({\mathtt{9}}{\mathtt{\,-\,}}{\mathtt{6}}){!}}}\right)} = {\mathtt{5\,376}}$$

 

You had better check that answer Mellie       

Melody  May 7, 2015
 #3
avatar+91053 
+5

WOW I got the same answer as CPhill   

Melody  May 7, 2015

3 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details