Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
6833
3
avatar+1836 

Find the constant term in the expansion of
\[\Big(z - \frac{2}{\sqrt{z}}\Big)^9.\]

 May 7, 2015

Best Answer 

 #2
avatar+118696 
+10

\\\left(z-\frac{2}{\sqrt{z}}\right)^9\\\\ $The general term is$\\\\ (9Cr)(z)^{(9-r)}\left(\frac{-2}{\sqrt{z}\right)^r}\\\\ =(9Cr)\left(\dfrac{z^9}{z^r}\right)\left(\dfrac{(-2)^r}{(\sqrt{z})^r\right)}\\\\ =(9Cr)\left(\dfrac{z^9*(-2)^r}{z^r*(\sqrt{z})^r\right)}\right)\\\\ =(9Cr)\left(\dfrac{z^{18/2}*(-2)^r}{z^{(2r/2)}*(z)^{(r/2)}\right)}\right)\\\\ =(9Cr)\left(\dfrac{z^{((18-2r-r)/2)}*(-2)^r}{1}\right)\\\\ =(9Cr)(z^{((18-3r)/2)}*(-2)^r)\\\\

 

$Theconstanttermwillbewhen$(183r)/2=0183r=0r=6S$sotheconstanttermis$=(9C6)(2)6)=649C6

 

64×(9!6!×(96)!)=5376

 

You had better check that answer Mellie       

 May 7, 2015
 #1
avatar+130466 
+11

We'll let WolframAlpha do the heavy lifting, here....

Looks like the constant term is 5376....

We could have actually determined this through the binomial expansion

The term would be  C(9,6)z^3 [-2*z^(-1/2)]^6 = C(9,6)[-2]^6 = 5376 .....note that the z's "cancel"

 

  

 May 7, 2015
 #2
avatar+118696 
+10
Best Answer

\\\left(z-\frac{2}{\sqrt{z}}\right)^9\\\\ $The general term is$\\\\ (9Cr)(z)^{(9-r)}\left(\frac{-2}{\sqrt{z}\right)^r}\\\\ =(9Cr)\left(\dfrac{z^9}{z^r}\right)\left(\dfrac{(-2)^r}{(\sqrt{z})^r\right)}\\\\ =(9Cr)\left(\dfrac{z^9*(-2)^r}{z^r*(\sqrt{z})^r\right)}\right)\\\\ =(9Cr)\left(\dfrac{z^{18/2}*(-2)^r}{z^{(2r/2)}*(z)^{(r/2)}\right)}\right)\\\\ =(9Cr)\left(\dfrac{z^{((18-2r-r)/2)}*(-2)^r}{1}\right)\\\\ =(9Cr)(z^{((18-3r)/2)}*(-2)^r)\\\\

 

$Theconstanttermwillbewhen$(183r)/2=0183r=0r=6S$sotheconstanttermis$=(9C6)(2)6)=649C6

 

64×(9!6!×(96)!)=5376

 

You had better check that answer Mellie       

Melody May 7, 2015
 #3
avatar+118696 
+4

WOW I got the same answer as CPhill   

 May 7, 2015

2 Online Users