find the coordinates of the midpoint of HX. H(-1,3), X(7,-1)
$$\vec{H}=\left(\begin{array}{rcl}
-1\\3
\end{array}
\right)
\quad
\vec{X}=\left(\begin{array}{rcl}
7\\-1
\end{array}
\right)
\quad
\vec{midpoint}=\dfrac{\vec{H}+\vec{X}} {2}$$
$$\\\vec{midpoint}=\dfrac{
\left(\begin{array}{rcl}
-1\\3
\end{array}
\right)
+
\left(\begin{array}{rcl}
7\\-1
\end{array}
\right)
}
{2}
=
\dfrac{
\left(\begin{array}{rcl}
-1+7\\3-1
\end{array}
\right)
}
{2}
=
\dfrac{
\left(\begin{array}{rcl}
6\\2\end{array}
\right)
}
{2}
=
\left(\begin{array}{rcl}
3\\1\end{array}
\right)$$
To find the midpoint .... add the x coordinates and divide by 2 ...then, add the y coordinates and divide by 2.......the first result will be the x coordinate of the midpoint and the second result will give you the y coordinate of the midpoint....
find the coordinates of the midpoint of HX. H(-1,3), X(7,-1)
$$\vec{H}=\left(\begin{array}{rcl}
-1\\3
\end{array}
\right)
\quad
\vec{X}=\left(\begin{array}{rcl}
7\\-1
\end{array}
\right)
\quad
\vec{midpoint}=\dfrac{\vec{H}+\vec{X}} {2}$$
$$\\\vec{midpoint}=\dfrac{
\left(\begin{array}{rcl}
-1\\3
\end{array}
\right)
+
\left(\begin{array}{rcl}
7\\-1
\end{array}
\right)
}
{2}
=
\dfrac{
\left(\begin{array}{rcl}
-1+7\\3-1
\end{array}
\right)
}
{2}
=
\dfrac{
\left(\begin{array}{rcl}
6\\2\end{array}
\right)
}
{2}
=
\left(\begin{array}{rcl}
3\\1\end{array}
\right)$$