+0  
 
0
4010
2
avatar

find the coordinates of the midpoint of HX. H(-1,3), X(7,-1)

 Sep 17, 2014

Best Answer 

 #2
avatar+26387 
+5

find the coordinates of the midpoint of HX. H(-1,3), X(7,-1)

$$\vec{H}=\left(\begin{array}{rcl}
-1\\3
\end{array}
\right)
\quad
\vec{X}=\left(\begin{array}{rcl}
7\\-1
\end{array}
\right)
\quad
\vec{midpoint}=\dfrac{\vec{H}+\vec{X}} {2}$$

$$\\\vec{midpoint}=\dfrac{
\left(\begin{array}{rcl}
-1\\3
\end{array}
\right)
+
\left(\begin{array}{rcl}
7\\-1
\end{array}
\right)
}
{2}
=
\dfrac{
\left(\begin{array}{rcl}
-1+7\\3-1
\end{array}
\right)
}
{2}
=
\dfrac{
\left(\begin{array}{rcl}
6\\2\end{array}
\right)
}
{2}
=
\left(\begin{array}{rcl}
3\\1\end{array}
\right)$$

 Sep 17, 2014
 #1
avatar+129849 
+5

To find the midpoint   .... add the x coordinates and divide by 2   ...then, add the y coordinates and divide by 2.......the first result will be the x coordinate of the midpoint and the second result will give you the y coordinate of the midpoint....

 

 Sep 17, 2014
 #2
avatar+26387 
+5
Best Answer

find the coordinates of the midpoint of HX. H(-1,3), X(7,-1)

$$\vec{H}=\left(\begin{array}{rcl}
-1\\3
\end{array}
\right)
\quad
\vec{X}=\left(\begin{array}{rcl}
7\\-1
\end{array}
\right)
\quad
\vec{midpoint}=\dfrac{\vec{H}+\vec{X}} {2}$$

$$\\\vec{midpoint}=\dfrac{
\left(\begin{array}{rcl}
-1\\3
\end{array}
\right)
+
\left(\begin{array}{rcl}
7\\-1
\end{array}
\right)
}
{2}
=
\dfrac{
\left(\begin{array}{rcl}
-1+7\\3-1
\end{array}
\right)
}
{2}
=
\dfrac{
\left(\begin{array}{rcl}
6\\2\end{array}
\right)
}
{2}
=
\left(\begin{array}{rcl}
3\\1\end{array}
\right)$$

heureka Sep 17, 2014

1 Online Users