Processing math: 100%
 
+0  
 
+3
2612
1
avatar

find the coordinates of the midpoint of segment hx h(5(1/2),-4(1/4)) x(3(3/4), -1(1/4))

 Sep 21, 2014

Best Answer 

 #1
avatar+3454 
+8

First simplify the point coordinates to make this easier to look at/solve.

Point h:

(5(1/2),-4(1/4))

(5/2),(-4/4))

(5/2),(-1)

 

Point x:

(3(3/4), -1(1/4))

(9/4),(-1/4)

 

Now we have to use the midpoint formula, which basically adds the x values of both points, then divides them by 2.

You then do this to the y values too. Here's a picture showing you the midpoint formula:

 

 

Let's put in the values of your two points:

 

(x1+x22,y1+y22)

 

(52+942,1+142)

 

(104+942,44+142)

 

(1942,542)

 

(194×12,54×12)

 

({\frac{19}{8}},{-\frac{5}{8})

 

Looks like the midpoint is (198,58) or (238,58)

 

Picture taken from: http://www.regentsprep.org/Regents/math/geometry/GCG2/Lmidpoint.htm

 Sep 21, 2014
 #1
avatar+3454 
+8
Best Answer

First simplify the point coordinates to make this easier to look at/solve.

Point h:

(5(1/2),-4(1/4))

(5/2),(-4/4))

(5/2),(-1)

 

Point x:

(3(3/4), -1(1/4))

(9/4),(-1/4)

 

Now we have to use the midpoint formula, which basically adds the x values of both points, then divides them by 2.

You then do this to the y values too. Here's a picture showing you the midpoint formula:

 

 

Let's put in the values of your two points:

 

(x1+x22,y1+y22)

 

(52+942,1+142)

 

(104+942,44+142)

 

(1942,542)

 

(194×12,54×12)

 

({\frac{19}{8}},{-\frac{5}{8})

 

Looks like the midpoint is (198,58) or (238,58)

 

Picture taken from: http://www.regentsprep.org/Regents/math/geometry/GCG2/Lmidpoint.htm

NinjaDevo Sep 21, 2014

1 Online Users

avatar