+0  
 
+3
734
1
avatar

find the coordinates of the midpoint of segment hx h(5(1/2),-4(1/4)) x(3(3/4), -1(1/4))

Guest Sep 21, 2014

Best Answer 

 #1
avatar+3450 
+8

First simplify the point coordinates to make this easier to look at/solve.

Point h:

(5(1/2),-4(1/4))

(5/2),(-4/4))

(5/2),(-1)

 

Point x:

(3(3/4), -1(1/4))

(9/4),(-1/4)

 

Now we have to use the midpoint formula, which basically adds the x values of both points, then divides them by 2.

You then do this to the y values too. Here's a picture showing you the midpoint formula:

 

 

Let's put in the values of your two points:

 

$$(\frac{x_1 + x_2}{2},\frac{y_1 + y_2}{2})$$

 

$$(\frac{\frac{5}{2} + \frac{9}{4}}{2},\frac{-1 + -\frac{1}{4}}{2})$$

 

$$(\frac{\frac{10}{4} + \frac{9}{4}}{2},\frac{-\frac{4}{4} + -\frac{1}{4}}{2})$$

 

$$(\frac{\frac{19}{4}}{2},\frac{-\frac{5}{4}}{2})$$

 

$$({\frac{19}{4}}\times\frac{1}{2},{-\frac{5}{4}}\times\frac{1}{2})$$

 

$$({\frac{19}{8}},{-\frac{5}{8})$$

 

Looks like the midpoint is $$(\frac{19}{8}, -\frac{5}{8})$$ or $$(2\frac{3}{8}, -\frac{5}{8})$$

 

Picture taken from: http://www.regentsprep.org/Regents/math/geometry/GCG2/Lmidpoint.htm

NinjaDevo  Sep 21, 2014
 #1
avatar+3450 
+8
Best Answer

First simplify the point coordinates to make this easier to look at/solve.

Point h:

(5(1/2),-4(1/4))

(5/2),(-4/4))

(5/2),(-1)

 

Point x:

(3(3/4), -1(1/4))

(9/4),(-1/4)

 

Now we have to use the midpoint formula, which basically adds the x values of both points, then divides them by 2.

You then do this to the y values too. Here's a picture showing you the midpoint formula:

 

 

Let's put in the values of your two points:

 

$$(\frac{x_1 + x_2}{2},\frac{y_1 + y_2}{2})$$

 

$$(\frac{\frac{5}{2} + \frac{9}{4}}{2},\frac{-1 + -\frac{1}{4}}{2})$$

 

$$(\frac{\frac{10}{4} + \frac{9}{4}}{2},\frac{-\frac{4}{4} + -\frac{1}{4}}{2})$$

 

$$(\frac{\frac{19}{4}}{2},\frac{-\frac{5}{4}}{2})$$

 

$$({\frac{19}{4}}\times\frac{1}{2},{-\frac{5}{4}}\times\frac{1}{2})$$

 

$$({\frac{19}{8}},{-\frac{5}{8})$$

 

Looks like the midpoint is $$(\frac{19}{8}, -\frac{5}{8})$$ or $$(2\frac{3}{8}, -\frac{5}{8})$$

 

Picture taken from: http://www.regentsprep.org/Regents/math/geometry/GCG2/Lmidpoint.htm

NinjaDevo  Sep 21, 2014

13 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.