+0  
 
0
450
1
avatar

|2 -1 2|

|-4 0 1|

|-1 -1 -1|

(the vertical line at the front and back of each one are all suppose to be connected vertically)

Guest Mar 23, 2015

Best Answer 

 #1
avatar+20593 
+5

|2 -1 2|

|-4 0 1|

|-1 -1 -1|

(the vertical line at the front and back of each one are all suppose to be connected vertically)

$$\small{\text{
$
\left|
\begin{array}{rrr}
2 &-1 &2 \\
-4 &0 &1 \\
-1 &-1 &-1 \\
\end{array}
\right|
$
}}\\\\\\
\begin{array}{ll}
= &
2\cdot 0 \cdot (-1) + (-1)\cdot(-1)\cdot 1 + (-4)\cdot(-1)\cdot 2\\
&- (-1)\cdot 0 \cdot 2 - 2\cdot(-1)\cdot 1 - (-4)\cdot(-1)\cdot(-1)\\
= &
0 + 1 + 8\\
&-0 + 2 +4\\
= &
9\\
&+6\\
= 15
\end{array}
$
}}$$

see also: https://www.khanacademy.org/math/precalculus/precalc-matrices/inverting_matrices/v/finding-the-determinant-of-a-3x3-matrix-method-1

heureka  Mar 24, 2015
 #1
avatar+20593 
+5
Best Answer

|2 -1 2|

|-4 0 1|

|-1 -1 -1|

(the vertical line at the front and back of each one are all suppose to be connected vertically)

$$\small{\text{
$
\left|
\begin{array}{rrr}
2 &-1 &2 \\
-4 &0 &1 \\
-1 &-1 &-1 \\
\end{array}
\right|
$
}}\\\\\\
\begin{array}{ll}
= &
2\cdot 0 \cdot (-1) + (-1)\cdot(-1)\cdot 1 + (-4)\cdot(-1)\cdot 2\\
&- (-1)\cdot 0 \cdot 2 - 2\cdot(-1)\cdot 1 - (-4)\cdot(-1)\cdot(-1)\\
= &
0 + 1 + 8\\
&-0 + 2 +4\\
= &
9\\
&+6\\
= 15
\end{array}
$
}}$$

see also: https://www.khanacademy.org/math/precalculus/precalc-matrices/inverting_matrices/v/finding-the-determinant-of-a-3x3-matrix-method-1

heureka  Mar 24, 2015

9 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.