+0  
 
0
367
1
avatar+644 

Find the equation of the line passing through the points (-3, -16) and (4,5). Enter your answer in "y=mx+b" form.

waffles  Nov 10, 2017

Best Answer 

 #1
avatar+7324 
+1

First let's find the slope between these two points.

 

slope  \(=\,\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{5-(-16)}{4-(-3)}\,=\,\frac{5+16}{4+3}\,=\,\frac{21}{7}\)   =   3

 

Using a slope of  3  and the point  (4, 5) , the equation of the line in point-slope form is

 

y - 5  =  3(x - 4)          Distribute the  3 .

 

y - 5  =  3x - 12          Add  5  to both sides.

 

y  =  3x - 7          smiley

hectictar  Nov 11, 2017
 #1
avatar+7324 
+1
Best Answer

First let's find the slope between these two points.

 

slope  \(=\,\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{5-(-16)}{4-(-3)}\,=\,\frac{5+16}{4+3}\,=\,\frac{21}{7}\)   =   3

 

Using a slope of  3  and the point  (4, 5) , the equation of the line in point-slope form is

 

y - 5  =  3(x - 4)          Distribute the  3 .

 

y - 5  =  3x - 12          Add  5  to both sides.

 

y  =  3x - 7          smiley

hectictar  Nov 11, 2017

26 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.