+0

# Find the equation of the line passing through the points (-3, -16) and (4,5). Enter your answer in 'y=mx+b' form.

0
495
1

Find the equation of the line passing through the points (-3, -16) and (4,5). Enter your answer in "y=mx+b" form.

Nov 10, 2017

#1
+1

First let's find the slope between these two points.

slope  $$=\,\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{5-(-16)}{4-(-3)}\,=\,\frac{5+16}{4+3}\,=\,\frac{21}{7}$$   =   3

Using a slope of  3  and the point  (4, 5) , the equation of the line in point-slope form is

y - 5  =  3(x - 4)          Distribute the  3 .

y - 5  =  3x - 12          Add  5  to both sides.

y  =  3x - 7 Nov 11, 2017

#1
+1

First let's find the slope between these two points.

slope  $$=\,\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{5-(-16)}{4-(-3)}\,=\,\frac{5+16}{4+3}\,=\,\frac{21}{7}$$   =   3

Using a slope of  3  and the point  (4, 5) , the equation of the line in point-slope form is

y - 5  =  3(x - 4)          Distribute the  3 .

y - 5  =  3x - 12          Add  5  to both sides.

y  =  3x - 7 hectictar Nov 11, 2017