+0  
 
0
495
1
avatar+644 

Find the equation of the line passing through the points (-3, -16) and (4,5). Enter your answer in "y=mx+b" form.

 Nov 10, 2017

Best Answer 

 #1
avatar+7352 
+1

First let's find the slope between these two points.

 

slope  \(=\,\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{5-(-16)}{4-(-3)}\,=\,\frac{5+16}{4+3}\,=\,\frac{21}{7}\)   =   3

 

Using a slope of  3  and the point  (4, 5) , the equation of the line in point-slope form is

 

y - 5  =  3(x - 4)          Distribute the  3 .

 

y - 5  =  3x - 12          Add  5  to both sides.

 

y  =  3x - 7          smiley

 Nov 11, 2017
 #1
avatar+7352 
+1
Best Answer

First let's find the slope between these two points.

 

slope  \(=\,\frac{\text{change in y}}{\text{change in x}}\,=\,\frac{5-(-16)}{4-(-3)}\,=\,\frac{5+16}{4+3}\,=\,\frac{21}{7}\)   =   3

 

Using a slope of  3  and the point  (4, 5) , the equation of the line in point-slope form is

 

y - 5  =  3(x - 4)          Distribute the  3 .

 

y - 5  =  3x - 12          Add  5  to both sides.

 

y  =  3x - 7          smiley

hectictar Nov 11, 2017

8 Online Users

avatar
avatar