+0  
 
0
816
1
avatar

Find the equation of the perpendicular bisector of the line joining A(2, -1) B(8, 3)

Guest Dec 31, 2014

Best Answer 

 #1
avatar+17745 
+10

To be a perpendicular bisector it must be both perpendicular and a bisector.

To be a bisector, it must pass through the midpoint of the line segment AB.

A formula for finding the midpoint of A(x1, y1) and B(x2, y2) is  Midpoint  =  ( (x1 + x2)/2, (y1 + y2)/2 ).

--->   Midpoint  =  ( (2 + 8)/2, (-1 + 3)/2 )  =  (5, 1)

To be perpendicular, the slope of the line must be the negative reciprocal of the original line.

A formula for slope is:  m  =  (y2 - y1) / (x2 - x1)

--->   Slope  =  (3 - -1) / (8 - 2)  =  4/6  =  2/3

--->  Negative reciprocal of that slope:  m  =  -3/2

Point-slope equation of a line:  y - y1  =  m(x - x1)

--->   Point  =  (5, 1)         Slope  =  -3/2

--->   y - 1  =  -3/2(x - 5)

--->   2y - 2  =  -3(x - 5)

--->   2y - 2  =  -3x + 15

--->   2y  =  -3x + 17

--->   3x + 2y  =  17

geno3141  Dec 31, 2014
 #1
avatar+17745 
+10
Best Answer

To be a perpendicular bisector it must be both perpendicular and a bisector.

To be a bisector, it must pass through the midpoint of the line segment AB.

A formula for finding the midpoint of A(x1, y1) and B(x2, y2) is  Midpoint  =  ( (x1 + x2)/2, (y1 + y2)/2 ).

--->   Midpoint  =  ( (2 + 8)/2, (-1 + 3)/2 )  =  (5, 1)

To be perpendicular, the slope of the line must be the negative reciprocal of the original line.

A formula for slope is:  m  =  (y2 - y1) / (x2 - x1)

--->   Slope  =  (3 - -1) / (8 - 2)  =  4/6  =  2/3

--->  Negative reciprocal of that slope:  m  =  -3/2

Point-slope equation of a line:  y - y1  =  m(x - x1)

--->   Point  =  (5, 1)         Slope  =  -3/2

--->   y - 1  =  -3/2(x - 5)

--->   2y - 2  =  -3(x - 5)

--->   2y - 2  =  -3x + 15

--->   2y  =  -3x + 17

--->   3x + 2y  =  17

geno3141  Dec 31, 2014

31 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.