Sorry, idk why the formatting won't show on the domains when I do Latex.
Find the exact value of each of the following under the given conditions:
1)\(sin(a+B)\) 2)\(cos(a+B)\) 3)\(sin(a-B)\) 4)\(tan(a-B)\)
\(sin(a)=\frac{5}{13}\)
-3pi/2 < a < -pi
\(tan(B)=-\sqrt3\)
pi/2 < B < pi
To use the sum and difference formulas, we need to find cos(a), cos(B), sin(a), sin(B), tan(a) and tan(B).
Using the information given, we can find these values with the Pythagorean theorem.
\(\text{1)}\qquad\sin(a+B)\,=\,\sin( a)\cos (B)+\cos(a)\sin(B)\\~\\ \phantom{\text{1)}\qquad\sin(a+B)\,}=\,(\frac{5}{13})(-\frac12)+(-\frac{12}{13})(\frac{\sqrt3}{2})\\~\\ \phantom{\text{1)}\qquad\sin(a+B)\,}=\,-\frac{5}{26}-\frac{12\sqrt3}{26}\\~\\ \phantom{\text{1)}\qquad\sin(a+B)\,}=\,\frac{-5-12\sqrt3}{26}\\~\\ \text{2)}\qquad\cos(a+B)\,=\,\cos(a)\cos(B)-\sin(a)\sin(B)\\~\\ \phantom{\text{2)}\qquad\cos(a+B)\,}=\,(-\frac{12}{13})(-\frac{1}{2})-(\frac{5}{13})(\frac{\sqrt3}{2})\\~\\ \phantom{\text{2)}\qquad\cos(a+B)\,}=\,\frac{12}{26}-\frac{5\sqrt3}{26}\\~\\ \phantom{\text{2)}\qquad\cos(a+B)\,}=\,\frac{12-5\sqrt3}{26}\\~\\ \text{3)}\qquad\sin(a-B)\,=\,\sin(a)\cos(B)-\cos(a)\sin(B)\\~\\ \phantom{\text{3)}\qquad\sin(a-B)\,}=\,(\frac{5}{13})(-\frac12)-(-\frac{12}{13})(\frac{\sqrt3}{2})\\~\\ \phantom{\text{3)}\qquad\sin(a-B)\,}=\,-\frac{5}{26}+\frac{12\sqrt3}{26}\\~\\ \phantom{\text{3)}\qquad\sin(a-B)\,}=\,\frac{12\sqrt3-5}{26}\\~\\ \text{4)}\qquad\tan(a-B)\,=\,\frac{\tan(a)-\tan(B)}{1+\tan(a)\tan(B)}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-\frac{5}{12}--\frac{\sqrt3}{1}}{1+(-\frac{5}{12})(-\frac{\sqrt3}{1})}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-\frac{5}{12}+\sqrt3}{1+\frac{5\sqrt3}{12}}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-\frac{5}{12}+\sqrt3}{1+\frac{5\sqrt3}{12}}\cdot\frac{12}{12}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-5+12\sqrt3}{12+5\sqrt3}\)
To use the sum and difference formulas, we need to find cos(a), cos(B), sin(a), sin(B), tan(a) and tan(B).
Using the information given, we can find these values with the Pythagorean theorem.
\(\text{1)}\qquad\sin(a+B)\,=\,\sin( a)\cos (B)+\cos(a)\sin(B)\\~\\ \phantom{\text{1)}\qquad\sin(a+B)\,}=\,(\frac{5}{13})(-\frac12)+(-\frac{12}{13})(\frac{\sqrt3}{2})\\~\\ \phantom{\text{1)}\qquad\sin(a+B)\,}=\,-\frac{5}{26}-\frac{12\sqrt3}{26}\\~\\ \phantom{\text{1)}\qquad\sin(a+B)\,}=\,\frac{-5-12\sqrt3}{26}\\~\\ \text{2)}\qquad\cos(a+B)\,=\,\cos(a)\cos(B)-\sin(a)\sin(B)\\~\\ \phantom{\text{2)}\qquad\cos(a+B)\,}=\,(-\frac{12}{13})(-\frac{1}{2})-(\frac{5}{13})(\frac{\sqrt3}{2})\\~\\ \phantom{\text{2)}\qquad\cos(a+B)\,}=\,\frac{12}{26}-\frac{5\sqrt3}{26}\\~\\ \phantom{\text{2)}\qquad\cos(a+B)\,}=\,\frac{12-5\sqrt3}{26}\\~\\ \text{3)}\qquad\sin(a-B)\,=\,\sin(a)\cos(B)-\cos(a)\sin(B)\\~\\ \phantom{\text{3)}\qquad\sin(a-B)\,}=\,(\frac{5}{13})(-\frac12)-(-\frac{12}{13})(\frac{\sqrt3}{2})\\~\\ \phantom{\text{3)}\qquad\sin(a-B)\,}=\,-\frac{5}{26}+\frac{12\sqrt3}{26}\\~\\ \phantom{\text{3)}\qquad\sin(a-B)\,}=\,\frac{12\sqrt3-5}{26}\\~\\ \text{4)}\qquad\tan(a-B)\,=\,\frac{\tan(a)-\tan(B)}{1+\tan(a)\tan(B)}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-\frac{5}{12}--\frac{\sqrt3}{1}}{1+(-\frac{5}{12})(-\frac{\sqrt3}{1})}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-\frac{5}{12}+\sqrt3}{1+\frac{5\sqrt3}{12}}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-\frac{5}{12}+\sqrt3}{1+\frac{5\sqrt3}{12}}\cdot\frac{12}{12}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-5+12\sqrt3}{12+5\sqrt3}\)