+0  
 
0
957
1
avatar+895 

Sorry, idk why the formatting won't show on the domains when I do Latex.

Find the exact value of each of the following under the given conditions:

1)\(sin(a+B)\)  2)\(cos(a+B)\)  3)\(sin(a-B)\)  4)\(tan(a-B)\)

 

\(sin(a)=\frac{5}{13}\)

-3pi/2 < a < -pi

 

\(tan(B)=-\sqrt3\)

pi/2 < B < pi

 May 10, 2019
edited by AdamTaurus  May 10, 2019
edited by AdamTaurus  May 10, 2019

Best Answer 

 #1
avatar+9460 
+4

To use the sum and difference formulas, we need to find  cos(a),  cos(B),  sin(a),  sin(B),  tan(a)  and  tan(B).

Using the information given, we can find these values with the Pythagorean theorem.

 

 

\(\text{1)}\qquad\sin(a+B)\,=\,\sin( a)\cos (B)+\cos(a)\sin(B)\\~\\ \phantom{\text{1)}\qquad\sin(a+B)\,}=\,(\frac{5}{13})(-\frac12)+(-\frac{12}{13})(\frac{\sqrt3}{2})\\~\\ \phantom{\text{1)}\qquad\sin(a+B)\,}=\,-\frac{5}{26}-\frac{12\sqrt3}{26}\\~\\ \phantom{\text{1)}\qquad\sin(a+B)\,}=\,\frac{-5-12\sqrt3}{26}\\~\\ \text{2)}\qquad\cos(a+B)\,=\,\cos(a)\cos(B)-\sin(a)\sin(B)\\~\\ \phantom{\text{2)}\qquad\cos(a+B)\,}=\,(-\frac{12}{13})(-\frac{1}{2})-(\frac{5}{13})(\frac{\sqrt3}{2})\\~\\ \phantom{\text{2)}\qquad\cos(a+B)\,}=\,\frac{12}{26}-\frac{5\sqrt3}{26}\\~\\ \phantom{\text{2)}\qquad\cos(a+B)\,}=\,\frac{12-5\sqrt3}{26}\\~\\ \text{3)}\qquad\sin(a-B)\,=\,\sin(a)\cos(B)-\cos(a)\sin(B)\\~\\ \phantom{\text{3)}\qquad\sin(a-B)\,}=\,(\frac{5}{13})(-\frac12)-(-\frac{12}{13})(\frac{\sqrt3}{2})\\~\\ \phantom{\text{3)}\qquad\sin(a-B)\,}=\,-\frac{5}{26}+\frac{12\sqrt3}{26}\\~\\ \phantom{\text{3)}\qquad\sin(a-B)\,}=\,\frac{12\sqrt3-5}{26}\\~\\ \text{4)}\qquad\tan(a-B)\,=\,\frac{\tan(a)-\tan(B)}{1+\tan(a)\tan(B)}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-\frac{5}{12}--\frac{\sqrt3}{1}}{1+(-\frac{5}{12})(-\frac{\sqrt3}{1})}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-\frac{5}{12}+\sqrt3}{1+\frac{5\sqrt3}{12}}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-\frac{5}{12}+\sqrt3}{1+\frac{5\sqrt3}{12}}\cdot\frac{12}{12}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-5+12\sqrt3}{12+5\sqrt3}\)

 May 10, 2019
 #1
avatar+9460 
+4
Best Answer

To use the sum and difference formulas, we need to find  cos(a),  cos(B),  sin(a),  sin(B),  tan(a)  and  tan(B).

Using the information given, we can find these values with the Pythagorean theorem.

 

 

\(\text{1)}\qquad\sin(a+B)\,=\,\sin( a)\cos (B)+\cos(a)\sin(B)\\~\\ \phantom{\text{1)}\qquad\sin(a+B)\,}=\,(\frac{5}{13})(-\frac12)+(-\frac{12}{13})(\frac{\sqrt3}{2})\\~\\ \phantom{\text{1)}\qquad\sin(a+B)\,}=\,-\frac{5}{26}-\frac{12\sqrt3}{26}\\~\\ \phantom{\text{1)}\qquad\sin(a+B)\,}=\,\frac{-5-12\sqrt3}{26}\\~\\ \text{2)}\qquad\cos(a+B)\,=\,\cos(a)\cos(B)-\sin(a)\sin(B)\\~\\ \phantom{\text{2)}\qquad\cos(a+B)\,}=\,(-\frac{12}{13})(-\frac{1}{2})-(\frac{5}{13})(\frac{\sqrt3}{2})\\~\\ \phantom{\text{2)}\qquad\cos(a+B)\,}=\,\frac{12}{26}-\frac{5\sqrt3}{26}\\~\\ \phantom{\text{2)}\qquad\cos(a+B)\,}=\,\frac{12-5\sqrt3}{26}\\~\\ \text{3)}\qquad\sin(a-B)\,=\,\sin(a)\cos(B)-\cos(a)\sin(B)\\~\\ \phantom{\text{3)}\qquad\sin(a-B)\,}=\,(\frac{5}{13})(-\frac12)-(-\frac{12}{13})(\frac{\sqrt3}{2})\\~\\ \phantom{\text{3)}\qquad\sin(a-B)\,}=\,-\frac{5}{26}+\frac{12\sqrt3}{26}\\~\\ \phantom{\text{3)}\qquad\sin(a-B)\,}=\,\frac{12\sqrt3-5}{26}\\~\\ \text{4)}\qquad\tan(a-B)\,=\,\frac{\tan(a)-\tan(B)}{1+\tan(a)\tan(B)}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-\frac{5}{12}--\frac{\sqrt3}{1}}{1+(-\frac{5}{12})(-\frac{\sqrt3}{1})}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-\frac{5}{12}+\sqrt3}{1+\frac{5\sqrt3}{12}}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-\frac{5}{12}+\sqrt3}{1+\frac{5\sqrt3}{12}}\cdot\frac{12}{12}\\~\\ \phantom{\text{4)}\qquad\tan(a-B)\,}=\,\frac{-5+12\sqrt3}{12+5\sqrt3}\)

hectictar May 10, 2019

3 Online Users

avatar