We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
52
6
avatar+895 

Find the exact value.

 May 10, 2019
 #1
avatar+8215 
+2

(a)

 

\(\sin^2\theta+\cos^2\theta\,=\,1 \)       by the Pythagorean Identity.

 

\((\frac13)^2+\cos^2\theta\,=\,1\)        because we are given that  \(\sin\theta\,=\,\frac13\)

 

\(\frac19+\cos^2\theta\,=\,1\\~\\ \cos^2\theta\,=\,1-\frac19\\~\\ \cos^2\theta\,=\,\frac89\\~\\ \cos\theta\,=\,\pm\sqrt{\frac89}\\~\\ \cos\theta\,=\,\pm\frac{2\sqrt2}{3} \)

 

Since  θ  is in Quadrant II,  cos θ  must be negative. So   \(\cos\theta\,=\,-\frac{2\sqrt2}{3}\)

 

(b)

 

\(\sin(\theta+\frac{\pi}{6})\,=\,\sin\theta\,\cos\frac{\pi}{6}+\cos\theta\,\sin\frac{\pi}{6}\)     by the angle sum formula for sin

 

\(\sin(\theta+\frac{\pi}{6})\,=\,(\frac13)(\frac{\sqrt3}{2})+(-\frac{2\sqrt2}{3})(\frac12)\\~\\ \sin(\theta+\frac{\pi}{6})\,=\,\frac{\sqrt3}{6}-\frac{2\sqrt2}{6}\\~\\ \sin(\theta+\frac{\pi}{6})\,=\,\frac{\sqrt3-2\sqrt2}{6}\)

 

(c)

 

\(\cos(\theta-\frac{\pi}{3})\,=\,\cos\theta\,\cos\frac{\pi}{3}+\sin\theta\,\sin\frac{\pi}{3}\)     by the angle difference formula for cos

 

Now plug in the values for  cos θ,  cos(pi/3) ,  sin θ , and  sin(pi/3)  and simplify. Can you finish this one?

 

(d)

 

To use the angle sum formula for tan, let's first find  tan θ.

 

\(\tan\theta\,=\,\frac{\sin\theta}{\cos\theta}\,=\,\frac{(\frac13)}{(-\frac{2\sqrt2}{3})}\,=\,-\frac{1}{2\sqrt2}\,=\,-\frac{\sqrt2}{4}\)

 

\(\tan(\theta+\frac{\pi}{4})\,=\,\frac{\tan\theta+\tan\frac{\pi}{4}}{1-\tan\theta\,\tan\frac{\pi}{4}}\)     by the angle sum formula for tan

 

\(\tan(\theta+\frac{\pi}{4})\,=\,\frac{(-\frac{\sqrt2}{4})+(1)}{1-(-\frac{\sqrt2}{4})(1)}\\~\\ \tan(\theta+\frac{\pi}{4})\,=\,\frac{4-\sqrt2}{4+\sqrt2}\)

.
 May 10, 2019
 #2
avatar+895 
+2

Thanks, man. On d, do you think I need to rationalize the denominator? I know how, but do I need to?

AdamTaurus  May 10, 2019
 #3
avatar+8215 
+2

I don't know either, but I guess it wouldn't hurt. Maybe better to be safe than sorry!

hectictar  May 10, 2019
 #4
avatar+895 
+2

Nice, thanks!

AdamTaurus  May 10, 2019
 #5
avatar+895 
+2

I got the same answer for c as the answer for b. Is that right?

AdamTaurus  May 10, 2019
 #6
avatar+8215 
+2

Yep they're the same!

hectictar  May 10, 2019

6 Online Users

avatar