(a)
\(\sin^2\theta+\cos^2\theta\,=\,1 \) by the Pythagorean Identity.
\((\frac13)^2+\cos^2\theta\,=\,1\) because we are given that \(\sin\theta\,=\,\frac13\)
\(\frac19+\cos^2\theta\,=\,1\\~\\ \cos^2\theta\,=\,1-\frac19\\~\\ \cos^2\theta\,=\,\frac89\\~\\ \cos\theta\,=\,\pm\sqrt{\frac89}\\~\\ \cos\theta\,=\,\pm\frac{2\sqrt2}{3} \)
Since θ is in Quadrant II, cos θ must be negative. So \(\cos\theta\,=\,-\frac{2\sqrt2}{3}\)
(b)
\(\sin(\theta+\frac{\pi}{6})\,=\,\sin\theta\,\cos\frac{\pi}{6}+\cos\theta\,\sin\frac{\pi}{6}\) by the angle sum formula for sin
\(\sin(\theta+\frac{\pi}{6})\,=\,(\frac13)(\frac{\sqrt3}{2})+(-\frac{2\sqrt2}{3})(\frac12)\\~\\ \sin(\theta+\frac{\pi}{6})\,=\,\frac{\sqrt3}{6}-\frac{2\sqrt2}{6}\\~\\ \sin(\theta+\frac{\pi}{6})\,=\,\frac{\sqrt3-2\sqrt2}{6}\)
(c)
\(\cos(\theta-\frac{\pi}{3})\,=\,\cos\theta\,\cos\frac{\pi}{3}+\sin\theta\,\sin\frac{\pi}{3}\) by the angle difference formula for cos
Now plug in the values for cos θ, cos(pi/3) , sin θ , and sin(pi/3) and simplify. Can you finish this one?
(d)
To use the angle sum formula for tan, let's first find tan θ.
\(\tan\theta\,=\,\frac{\sin\theta}{\cos\theta}\,=\,\frac{(\frac13)}{(-\frac{2\sqrt2}{3})}\,=\,-\frac{1}{2\sqrt2}\,=\,-\frac{\sqrt2}{4}\)
\(\tan(\theta+\frac{\pi}{4})\,=\,\frac{\tan\theta+\tan\frac{\pi}{4}}{1-\tan\theta\,\tan\frac{\pi}{4}}\) by the angle sum formula for tan
\(\tan(\theta+\frac{\pi}{4})\,=\,\frac{(-\frac{\sqrt2}{4})+(1)}{1-(-\frac{\sqrt2}{4})(1)}\\~\\ \tan(\theta+\frac{\pi}{4})\,=\,\frac{4-\sqrt2}{4+\sqrt2}\)
Thanks, man. On d, do you think I need to rationalize the denominator? I know how, but do I need to?